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equations on SD−2. Reading off the equation of state of this fluid from the thermodynam-

ics of non-rotating black holes, we proceed to construct the nonlinear spinning solutions

of fluid mechanics that are dual to rotating black holes. In all known examples, the ther-

modynamics and the local stress tensor of our solutions are in precise agreement with the

thermodynamics and boundary stress tensor of the spinning black holes. Our fluid dy-
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non-supersymmetric extremal black holes, but is never valid for supersymmetric black
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on AdS4 × S7 and AdS7 × S4.
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1. Introduction

In this paper, we predict certain universal features in the thermodynamics and other clas-

sical properties of large rotating black holes in global AdSD spaces for arbitrary D. Our

analysis applies to black holes in any consistent theory of gravity that admits an AdSD
background; for example, IIB theory on AdS5×S5 or M theory on AdS7×S4 or AdS4×S7.

All theories of gravity on an AdSD background are expected to admit a dual description

as a quantum field theory on SD−2× time [1, 2]. Moreover, it is expected to be generally

true that quantum field theories at sufficiently high energy density admit an effective

description in terms of fluid dynamics. Putting together these facts, we propose that large,

rotating black holes in arbitrary global AdSD spaces admit an accurate dual description

as rotating, stationary configurations of a conformal fluid on SD−2.
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Assuming our proposal is indeed true, we are able to derive several properties of large

rotating AdS black holes as follows: We first read off the thermodynamic equation of

state of the dual ‘fluid’ from the properties of large, static, non-rotating AdS black holes.

Inputting these equations of state into the Navier-Stokes equations, we are then able to

deduce the thermodynamics of rotating black holes. In the rest of this introduction, we

will describe our proposal and its consequences, including the tests it successfully passes,

in more detail.

Consider a theory of gravity coupled to a gauge field (based on a gauge group of

rank c) on AdSD. In an appropriate limit, the boundary theory is effectively described

by conformal fluid dynamics with c simultaneously conserved, mutually commuting U(1)

charges Ri (i = 1 . . . c). Conformal invariance and extensivity force the grand canonical

partition function of this fluid to take the form

1

V
lnZgc = T d−1 h(ζ/T ) , (1.1)

where ζ represents the set of the c chemical potentials conjugate to the U(1) charges of the

fluid, V and T represent the volume and the overall temperature of the fluid respectively

and d = D − 1 is the spacetime dimensions of the boundary. As we have explained above,

the as yet unknown function h(ζ/T ) may be read off from the thermodynamics of large,

charged, static black holes in AdS.

The thermodynamic equation of state described above forms an input into the relativis-

tic Navier-Stokes equations that govern the effective dynamics of the boundary conformal

fluid. The full equations of fluid dynamics require more data than just the equation of

state; for example we need to input dissipative parameters like viscosity. However, fluid

dynamics on Sd−1 admits a distinguished c + n + 1 parameter set of stationary solutions

(the parameters are their energy E, c commuting charges Ri and n = rank(SO(d)) =
[
d
2

]

commuting angular momenta1 on Sd−1). These solutions are simply the configurations into

which any fluid initial state eventually settles down in equilibrium. They have the feature

that their form and properties are independent of the values of dissipative parameters.

Although these solutions are nonlinear (i.e. they cannot be thought of as a small

fluctuation about a uniform fluid configuration), it turns out that they are simple enough to

be determined explicitly. These solutions turn out to be universal (i.e. they are independent

of the detailed form of the function h(ζ/T )). Their thermodynamics is incredibly simple;

it is summarised by the partition function

lnZgc = lnTr exp

[
−(H − ζiRi − ΩaLa)

T

]
=
VdT

d−1h(ζ/T )∏n
a=1(1 − Ω2

a)
, (1.2)

where H,La and Ωa represent the energy, angular momenta and the angular velocities of

the fluid respectively and Vd = Vol(Sd−1) is the volume of the sphere Sd−1.

We now turn to the gravitational dual interpretation of the fluid dynamical solutions

we have described above. A theory of a rank c gauge field, interacting with gravity on

1Here, we use the notation [x] to denote the integer part of the real number x. For a list of notation,

see appendix D.
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AdSD, possesses a c+n+1 parameter set of black hole solutions, labelled by the conserved

charges described above. We propose that these black holes (when large) are dual to the

solutions of fluid dynamics described in the previous paragraph. Our proposal yields an

immediate prediction about the thermodynamics of large rotating black holes: the grand

canonical partition function of these black holes must take the form of (1.2).

Notice that while the dependence of the partition function (1.2) on ζ/T is arbitrary, its

dependence on Ωa is completely fixed. Thus, while our approach cannot predict thermody-

namic properties of the static black holes, it does allow us to predict the thermodynamics

of large rotating black holes in terms of the thermodynamics of their static counterparts.2

Further, our solution of fluid dynamics yields a detailed prediction for the boundary stress

tensor and the local charge distribution of the corresponding black hole solution, which

may be compared with the boundary stress tensor and currents calculated from black hole

solutions (after subtracting the appropriate counterterms [3 – 10]).

Our proposal is highly reminiscent of the membrane paradigm in black hole physics

(see, for instance, [11, 12]). However, we emphasise that our fluid dynamical description of

black holes is not a guess; our proposal follows directly from the AdS/CFT correspondence

in a precisely understood regime (see [13] for a review of AdS/CFT correspondence).3

We have tested the thermodynamical predictions described above on every class of

black hole solutions in AdSD spaces that we are aware of. These solutions include the most

general uncharged rotating black holes in arbitrary AdSD space [14 – 16], various classes of

charged rotating black holes in AdS5 × S5 [17 – 20], in AdS7 × S4 and in AdS4 × S7 [21 –

23]. In the strict fluid dynamical limit, the thermodynamics of each of these black holes

exactly reproduces4 (1.2). In all the cases we have checked, the boundary stress tensor

and the charge densities of these black holes (read off from the black hole solutions using

the AdS/CFT dictionary) are also in perfect agreement with our fluid dynamical solutions.

The agreement described in this paragraph occurs only when one would expect it to, as we

now explain in detail.

Recall that the equations of fluid mechanics describe the evolution of local energy den-

sities, charge densities and fluid velocities as functions of spatial position. These equations

are applicable only under certain conditions. First, the fluctuations about mean values (of

variables like the local energy density) must be negligible. In the situations under study

in our paper, the neglect of fluctuations is well justified by the ‘large N ’ limit of the field

theory, dual to the classical limit of the gravitational bulk.

Second, the equations of fluid mechanics assume that the fluid is in local thermody-

namic equilibrium at each point in space, even though the energy and the charge densities

2The analogue of our procedure in an asymptotically flat space (which we unfortunately do not have)

would be a method to deduce the thermodynamics and other properties of the charged Kerr black hole,

given the solution of static charged black holes.
3Alternatively, one could regard the agreement between fluid dynamics and gravity described below as

a test of the AdS/CFT correspondence (provided we are ready to assume in addition the applicability of

fluid mechanics to quantum field theories at high density).
4See, however, section 6.10 for a puzzle regarding the first subleading corrections for a class of black

holes in AdS5.
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of the fluid may vary in space. Fluid mechanics applies only when the length scales of

variation of thermodynamic variables - and the length scale of curvatures of the manifold

on which the fluid propagates - are large compared to the equilibration length scale of the

fluid, a distance we shall refer to as the mean free path lmfp.

The mean free path for any fluid may be estimated as [24] lmfp ∼ η
ρ where η is the shear

viscosity and ρ is the energy density of the fluid. For fluids described by a gravitational

dual, η = s
4π where s is the entropy density [24]. Consequently, for the fluids under study

in this paper, lmfp ∼ s
4πρ . As we will see in section 3.7, the most stringent bound on lmfp,

for the solutions presented in this paper, comes from requiring that lmfp be small compared

to the radius of the Sd−1, which we set to unity. Consequently, fluid dynamics should be

an accurate description for our solutions whenever s
4πρ ≪ 1. In every case we have studied,

it turns out that this condition is met whenever the horizon radius, RH , of the dual black

hole is large compared to the AdS radius , RAdS. Black holes that obey this condition

include all black holes whose temperature is large compared to unity, but also includes

large radius extremal black holes in AdS5 × S5, AdS7 × S4 and AdS4 × S7. It, however,

never includes supersymmetric black holes in the same backgrounds, whose horizon radii

always turn out to be of the same order as the AdS radius.

It follows that we should expect the Navier-Stokes equations to reproduce the ther-

modynamics of only large black holes. In all the cases we have studied, this is indeed the

case. It is possible to expand the formulae of black hole thermodynamics (and the stress

tensor and charge distribution) in a power series in RAdS/RH . While the leading order

term in this expansion matches the results of fluid dynamics, we find deviations from the

predictions of Navier-Stokes equations at subleading orders.

Starting with the work of Policastro, Son and Starinets [25], there have been several

fascinating studies over the last few years, that have computed fluid dynamical dissipative

and transport coefficients from gravity (see the review [24] and the references therein).

The work reported in this paper differs from these analyses in several ways. Firstly, the

solutions of fluid mechanics we study are nonlinear; in general they cannot be thought of as

small fluctuations about the uniform fluid configuration dual to static black holes. Second,

all our solutions are stationary: dissipative parameters play no role in our work.

Indeed our work rather follows the same line of investigation as the one applied to

plasmaballs and plasmarings in [26, 27]. These investigations used the boundary fluid dy-

namics to make detailed predictions about the nature and phase structure of the black

holes and black rings in Scherk-Schwarz compactified AdS spaces. The predictions of these

papers have not yet been quantitatively verified as the corresponding black hole and black

ring solutions have not yet been constructed. The perfect agreement between fluid dynam-

ics and gravity in the simpler and better studied context of this paper lends significant

additional support to those predictions of [26, 27] that were made using fluid mechanics.

While in this paper we have used fluid dynamics to make predictions for black hole

physics, the reverse view point may also prove useful. Existing black hole solutions in

AdS spaces provide exact equilibrium solutions to the equations of fluid dynamics to all

orders in lmfp. A study of the higher order corrections of these solutions (away from the

lmfp → 0 limit) might yield useful information about the nature of the fluid dynamical

– 5 –



J
H
E
P
0
9
(
2
0
0
8
)
0
5
4

approximation of quantum field theories.

The plan of our paper is as follows - In section 2, we set up the basic fluid mechanical

framework necessary for our work. It is followed by section 3 in which we consider in detail

a specific example of rigidly rotating fluid - a conformal fluid in S3 ×R. A straightforward

generalisation gives us a succinct way of formulating fluid mechanics in spheres of arbitrary

dimensions in section 4.

We proceed then to compare the fluid mechanical predictions with various types of

black holes in arbitrary dimensions. First, we consider uncharged rotating black holes in

arbitrary dimensions in section 5. Their thermodynamics, stress tensors and charge distri-

butions are computed and are shown to exactly match the fluid mechanical predictions. In

section 6, we turn to the large class of rotating black hole solutions in AdS5 × S5. Many

different black holes with different sets of charges and angular momenta are considered in

the large horizon radius limit and all of them are shown to fit exactly into our proposal in

the strict fluid dynamical limit. However we also find deviations from the predictions of

the Navier-Stokes equations at first subleading order in lmfp for black holes with all SO(6)

Cartan charges nonzero (these deviations vanish when the angular velocities, or one of the

SO(6) charges is set to zero). This finding is at odds with naive expectations from fluid

dynamics, which predict the first deviations from the Navier-Stokes equations to occur at

O(l2mfp) and is an as yet unresolved puzzle.

This is followed by section 7, dealing with large rotating black holes in AdS4 ×S7 and

AdS7 ×S4 backgrounds which are dual to field theories on M2 and M5 branes respectively.

The thermodynamics of the rotating black hole solutions in these spaces are derived from

their static counterparts using the duality to fluid mechanics and it is shown how the known

rotating black hole solutions agree with the fluid mechanical predictions in the large horizon

radius limit. In each of these cases, the formulae of black hole thermodynamics deviate

from the predictions of the Navier-Stokes equations only at O(l2mfp) in accord with general

expectations. In the final section, we conclude our work and discuss further directions.

In appendix A, we discuss the constraints imposed by conformal invariance on the

equations of fluid mechanics. In appendix B, we discuss the thermodynamics of free theories

on spheres. In appendix C, we present our computations of the boundary stress tensor for

two classes of black holes in AdS spaces. In appendix D, we summarise the notation used

throughout this paper.

2. The equations of fluid mechanics

2.1 The equations

The fundamental variables of fluid dynamics are the local proper energy density ρ, local

charge densities ri and fluid velocities uµ = γ(1, ~v). Assuming local thermodynamic equi-

librium, the rest frame entropy density s, the pressure P, the local temperature T and

the chemical potentials µi of the fluid can be expressed as functions of ρ and ri using the

equation of state and the first law of thermodynamics, as in section 2.5, section 2.6 be-

low. In what follows, we will often find it convenient to express the above thermodynamic

quantities in terms of T and µi rather than as functions of ρ and ri.

– 6 –
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The equations of fluid dynamics are simply a statement of the conservation of the

stress tensor T µν and the charge currents Jµi .

∇µT
µν = ∂µT

µν + ΓµµλT
λν + ΓνµλT

µλ = 0 ,

∇µJ
µ
i = ∂µJ

µ
i + ΓµµαJ

α
i = 0 .

(2.1)

2.2 Perfect fluid stress tensor

The dynamics of a fluid is completely specified once the stress tensor and charge currents are

given as functions of ρ, ri and uµ. As we have explained in the introduction, fluid mechanics

is an effective description at long distances (i.e, it is valid only when the fluid variables vary

on distance scales that are large compared to the mean free path lmfp). As a consequence

it is natural to expand the stress tensor and charge current in powers of derivatives. In

this subsection we briefly review the leading (i.e. zeroth) order terms in this expansion.

It is convenient to define a projection tensor

Pµν = gµν + uµuν . (2.2)

Pµν projects vectors onto the 3 dimensional submanifold orthogonal to uµ. In other words,

Pµν may be thought of as a projector onto spatial coordinates in the rest frame of the fluid.

In a similar fashion, −uµuν projects vectors onto the time direction in the fluid rest frame.

To zeroth order in the derivative expansion, Lorentz invariance and the correct static

limit uniquely determine the stress tensor, charge and the entropy currents in terms of the

thermodynamic variables. We have

T µνperfect = ρuµuν + PPµν ,
(Jµi )perfect = riu

µ,

(JµS )perfect = suµ,

(2.3)

where ρ = ρ(T , µi) is the rest frame energy density, s = s(T , µi) is the rest frame entropy

density of the fluid and µi are the chemical potentials. It is not difficult to verify that

in this zero-derivative (or perfect fluid) approximation, the entropy current is conserved.

Entropy production (associated with dissipation) occurs only at the first subleading order

in the derivative expansion, as we will see in the next subsection.

2.3 Dissipation and diffusion

Now, we proceed to examine the first subleading order in the derivative expansion. In

the first subleading order, Lorentz invariance and the physical requirement that entropy

be non-decreasing determine the form of the stress tensor and the current to be (see, for

example, section 14.1 of [28])

T µνdissipative = −ζϑPµν − 2ησµν + qµuν + uµqν ,

(Jµi )dissipative = qµi ,

(JµS )dissipative =
qµ − µiq

µ
i

T .

(2.4)

– 7 –
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where

aµ = uν∇νu
µ,

ϑ = ∇µu
µ,

σµν =
1

2

(
Pµλ∇λu

ν + P νλ∇λu
µ
)
− 1

d− 1
ϑPµν ,

qµ = −κPµν(∂νT + aνT ) ,

qµi = −DijP
µν∂ν

(µj
T
)
,

(2.5)

are the acceleration, expansion, shear tensor, heat flux and diffusion current respectively.

These equations define a set of new fluid dynamical parameters in addition to those of

the previous subsection: ζ is the bulk viscosity, η is the shear viscosity, κ is the thermal

conductivity and Dij are the diffusion coefficients. Fourier’s law of heat conduction ~q =

−κ~∇T has been relativistically modified to

qµ = −κPµν(∂νT + aνT ) , (2.6)

with an extra term that is related to the inertia of flowing heat. The diffusive contribution

to the charge current is the relativistic generalisation of Fick’s law.

At this order in the derivative expansion, the entropy current is no longer conserved;

however, it may be checked [28] that

T ∇µJ
µ
S =

qµqµ
κT + T (D−1)ijqµi qjµ + ζθ2 + 2ησµνσ

µν . (2.7)

As qµ, qµi and σµν are all spacelike vectors and tensors, the r.h.s. of (2.7) is positive provided

η, ζ, κ and D are positive parameters, a condition we further assume. This establishes that

(even locally) entropy can only be produced but never destroyed. In equilibrium, ∇µJ
µ
S

must vanish. It follows that, qµ, qµi , θ and σµν each individually vanish in equilibrium.

From the formulae above, we see that the ratio of T µνdissipative to T µνperfect is of the order

η/(Rρ) where η is the shear viscosity, ρ is the rest frame energy density and R is the typical

length scale of the flow under consideration. Consequently, the Navier-Stokes equations

may be thought of as the first term in a series expansion of the microscopic equations in

lmfp/R , where lmfp ∼ η
ρ . In this sense, lmfp plays a role analogous to the string scale in

the derivative expansion of the effective action in string theory. This length scale may

plausibly be identified with the thermalisation length scale of the fluid.5

When studying fluids on curved manifolds (as we will proceed to do in this paper),

one could add generally covariant terms, built out of curvatures, to the stress tensor. For

instance, we could add a term proportional to Rµν to the expression for T µν . We will

ignore all such terms in this paper for a reason we now explain. In all the solutions of fluid

mechanics that we will study, the length scale over which fluid quantities vary is the same

as the length scale of curvatures of the manifold. Any expression built out of a curvature

5This may be demonstrated within the kinetic theory, where lmfp is simply the mean free path of colliding

molecules, but is expected to apply to more generally to any fluid with short range interactions.
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contains at least two spacetime derivatives of the metric; it follows that any contribution

to the stress tensor proportional to a curvature is effectively at least two orders subleading

in the derivative expansion, and so is negligible compared to all the other terms we have

retained in this paper.

2.4 Conformal fluids

We will now specialise our discussion to a conformal fluid — the fluid of the ‘stuff’ of a

conformal field theory in d dimensions. Conformal invariance imposes restrictions on both

the thermodynamics of the fluid and the derivative expansion of the stress tensor discussed

in the previous subsection.

To start with, conformal invariance requires that the stress tensor be traceless.6 This

requirement relates the pressure of a conformal fluid to its density as P = ρ
d−1 (this

requirement may also be deduced from conformal thermodynamics, as we will see in the

next subsection) where d is the dimension of the spacetime in which the fluid lives. Further,

the tracelessness of the stress tensor also forces the bulk viscosity, ζ, to be zero.

It is easy to verify that these constraints are sufficient to guarantee the conformal

invariance of the fluid dynamical equations listed above. Consider a conformal transfor-

mation gµν = e2φg̃µν under which fluid velocity, temperature, rest energy density, pressure,

entropy density and the charge densities transform as

uµ = e−φũµ,

T = e−φT̃ ,

ρ = e−dφρ̃ , P = e−dφP̃ ,

s = e−(d−1)φs̃ ,

ri = e−(d−1)φr̃i .

It is easy to verify that these transformations induce the following transformations on

the stress tensors and currents listed in the previous subsection7

T µν = e−(d+2)φT̃ µν ,

Jµi = e−dφJ̃µi ,

JµS = e−dφJ̃µS .

(2.8)

These are precisely the transformation properties that ensure the conformal invariance of

the conservation equations (2.1). See appendix A for more details.

6More accurately, conformal invariance relates the nonzero trace of the stress tensor to certain curvature

forms; for example, in two dimension Tµµ = c
12
R where R is the scalar curvature. However, as we have

described above, curvatures are effectively zero in the one derivative expansion studied in this paper. All

formulae through the rest of this paper and in the appendices apply only upon neglecting curvatures. We

thank R. Gopakumar for a discussion of this point.
7Note that under such a scaling, the viscosity, conductivity etc. scale as κ = e−(d−2)φκ̃ , η = e−(d−1)φη̃,

µi = e−φµ̃i and Dij = e−(d−2)φ eDij .

– 9 –
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2.5 Conformal thermodynamics

In this subsection, we review the thermodynamics of the conformal fluids we discuss below.

The notation set up in this subsection will be used through the rest of this paper.

Define the thermodynamic potential

Φ = E − T S − µiRi . (2.9)

for which the first law of thermodynamics reads

dΦ = −SdT − PdV −Ridµi . (2.10)

Let us define νi = µi/T . It follows from conformal invariance and extensivity that

Φ = −V T dh(ν) , (2.11)

where h(ν) is defined by this expression. All remaining thermodynamic expressions are

easily determined in terms of the function h(νi)

ρ = (d− 1)P = (d− 1)T dh(ν) ,

ri = T d−1hi(ν) ,

s = T d−1(dh− νihi) ,

(2.12)

where

hi =
∂h

∂νi

denotes the derivative of h with respect to its ith argument.

2.6 A thermodynamic identity

We will now derive a thermodynamic identity that will be useful in our analysis below.

Define

Γ = E − T S + PV − µiRi = Φ + PV , (2.13)

the first law of thermodynamics implies that

dΓ = −SdT + V dP −Ridµi . (2.14)

Consider scaling the system by a factor (1+ǫ). Under such a scaling, extensivity implies that

dΓ = ǫΓ , dT = dP = dµi = 0 ,

which when substituted into (2.14) tells us that Γ = 0. Then we can divide (2.13) and (2.14)

by V to get

ρ+ P = sT + µiri ,

dP = sdT + ridµi .
(2.15)

in terms of the other thermodynamic variables.

– 10 –
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3. Equilibrium configurations of rotating conformal fluids on S3

In this section and in the next, we will determine the equilibrium solutions of fluid dynamics

equations for conformal fluids on spheres of arbitrary dimension. In this section, we work

out the fluid dynamics on S3 plus a time dimension in detail.8 In the next section, we

generalise the results of this section to spheres of arbitrary dimension.

3.1 Coordinates and conserved charges

Consider a unit S3 embedded in R
4 as

x1 = sin θ cosφ1

x2 = sin θ sinφ1

x3 = cos θ cosφ2

x4 = cos θ sinφ2

(3.1)

with θ ∈ [0, π2 ], φa ∈ [0, 2π). The metric of the spacetime S3 × R is

ds2 = −dt2 + dθ2 + sin2 θ dφ2
1 + cos2 θ dφ2

2 . (3.2)

This gives the following non-zero Christoffel symbols:

Γθφ1φ1
= −Γθφ2φ2

= − cos θ sin θ , Γφ1

θφ1
= Γφ1

φ1θ
= cot θ , Γφ2

θφ2
= Γφ2

φ2θ
= − tan θ . (3.3)

For the stationary, axially symmetric configurations under consideration, ∂tT
µν =

∂φaT
µν = 0. Using (3.3), (2.1) becomes

0 = ∇µT
µt = ∂θT

θt + (cot θ − tan θ)T θt, (3.4)

0 = ∇µT
µθ = ∂θT

θθ + (cot θ − tan θ)T θθ + cos θ sin θ
(
T φ1φ1 − T φ2φ2

)
, (3.5)

0 = ∇µT
µφ1 = ∂θT

θφ1 + (cot θ − tan θ)T θφ1 + 2cot θ T θφ1, (3.6)

0 = ∇µT
µφ2 = ∂θT

θφ2 + (cot θ − tan θ)T θφ2 − 2 tan θ T θφ2. (3.7)

The Killing vectors of interest are ∂t (Energy) and ∂φa (SO(4) Cartan angular mo-

menta). Using the formula for the related conserved charge,
∫

d3x
√−g T 0µgµνk

ν , we get:

E =

∫
dθdφ1dφ2 cos θ sin θ T tt,

L1 =

∫
dθdφ1dφ2 cos θ sin3 θ T tφ1 ,

L2 =

∫
dθdφ1dφ2 cos3 θ sin θ T tφ2 .

(3.8)

8In this case, the dimensions of the spacetime in which the fluid lives is d = 3 + 1 = 4. The number

of mutually commuting angular momenta is n = 2. The black hole dual lives in AdS space of dimensions

D = d+ 1 = 5.
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Assuming qµ = qµi = 0 (as will be true for stationary solutions we study in this paper), the

entropy and the R-charges corresponding to the currents in (2.3) are given as

S =

∫
dθdφ1dφ2 cos θ sin θ γs ,

Ri =

∫
dθdφ1dφ2 cos θ sin3 θ γri .

(3.9)

3.2 Equilibrium solutions

As we have explained in the section 2.3, each of the three quantities σµν , qµ, qµi must

vanish on any stationary solution of fluid dynamics. The requirement that σµν = 0 has a

unique solution - the fluid motion should be just a rigid rotation. By an SO(4) rotation

we can choose the two orthogonal two planes of this rotation as the (1-2) and (3-4) planes

(see (3.1)). This implies that uµ = γ(1, 0, ω1, ω2) (where we have listed the (t, θ, φ1, φ2)

components of the velocity) with γ =
(
1 − v2

)−1/2
and v2 = ω2

1 sin2 θ + ω2
2 cos2 θ, for some

constants ω1 and ω2.

Our equilibrium fluid flow enjoys a symmetry under translations of t, φ1 and φ2;

consequently all thermodynamic quantities are functions only of the coordinate θ.

Evaluating the tensors in (2.5), we find

aµ = (0,−∂θ ln γ, 0, 0),

ϑ = 0,

σµν = 0,

qµ = −κγ
(

0,
d

dθ

[T
γ

]
, 0, 0

)
,

qµi = −Dij

(
0,

d

dθ

[µj
T
]
, 0, 0

)
.

(3.10)

The requirement that qµ and qµi vanish forces us to set

T = τγ , µi = T νi , (3.11)

for constant τ and νi. These conditions completely determine all the thermodynamic

quantities as a function of the coordinates on the sphere. We will now demonstrate that

this configuration solves the Navier-Stokes equations.

First note that for an arbitrary rigid rotation, the dissipative part of the stress tensor

evaluates to

T µνdissipative = −κγ2




0 1 0 0

1 0 ω1 ω2

0 ω1 0 0

0 ω2 0 0




d

dθ

[T
γ

]
, (3.12)

– 12 –
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an expression which simply vanishes once we impose (3.11). Consequently, all nonzero

contributions to the stress tensor come from the ‘perfect fluid piece’ and are given by

T µνperfect =γ
2




(ρ+ v2P) 0 ω1(ρ+ P) ω2(ρ+ P)

0 γ−2P 0 0

ω1(ρ+ P) 0 ω2
1ρ+(csc2 θ−ω2

2 cot2 θ)P ω1ω2(ρ+ P)

ω2(ρ+ P) 0 ω1ω2(ρ+ P) ω2
2ρ+(sec2 θ−ω2

1 tan2 θ)P


 .

(3.13)

The only non-trivial equation of motion, (3.5), can be written as

dP
dθ

− ρ+ P
γ

dγ

dθ
= 0 . (3.14)

Now using the thermodynamic identity (2.15) we may recast (3.14) as

γs
d

dθ

[T
γ

]
+ γri

d

dθ

[
µi
γ

]
= 0 , (3.15)

an equation which is automatically true from (3.11). Consequently, rigidly rotating con-

figurations that obey (3.11) automatically obey the Navier-Stokes equations.

In a similar fashion, it is easy to verify that all nonzero contributions to the charge

currents come from the perfect fluid piece of that current, and that the conservation of

these currents holds for our solutions.

In summary the 3 + c parameter set of stationary solutions to fluid mechanics listed

in this subsection (the parameters are τ, ωa and νi where i = 1 . . . c ) constitute the most

general stationary solutions of fluid mechanics.

3.3 Stress tensor and currents

Using the equations of state (2.12), we find that

ρ = 3P = 3τ4γ4h(ν),

s = τ3γ3[4h(ν) − νihi(ν)],

ri = τ3γ3hi(ν).

(3.16)

The stress tensor is

T µν = τ4Aγ6




3 + v2 0 4ω1 4ω2

0 1 − v2 0 0

4ω1 0 3ω2
1 + csc2 θ − ω2

2 cot2 θ 4ω1ω2

4ω2 0 4ω1ω2 3ω2
2 + sec2 θ − ω2

1 tan2 θ


 . (3.17)

Charge and entropy currents are given by

Jµi = τ3γ4Ci(1, 0, ω1, ω2) ,

JµS = τ3γ4B(1, 0, ω1, ω2) ,
(3.18)

– 13 –
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where we have defined

A = h(ν) ,

B = 4h(ν) − νihi(ν) ,

Ci = hi(ν) =
∂h

∂νi
.

(3.19)

3.4 Charges

The energy, angular momentum, entropy and R-charges may now easily be evaluated by

integration: we find

E =
V4τ

4A

(1 − ω2
1)(1 − ω2

2)

[
2ω2

1

1 − ω2
1

+
2ω2

2

1 − ω2
2

+ 3

]
,

L1 =
V4τ

4A

(1 − ω2
1)(1 − ω2

2)

[
2ω1

1 − ω2
1

]
,

L2 =
V4τ

4A

(1 − ω2
1)(1 − ω2

2)

[
2ω2

1 − ω2
2

]
,

S =
V4τ

3B

(1 − ω2
1)(1 − ω2

2)
,

Ri =
V4τ

3Ci
(1 − ω2

1)(1 − ω2
2)
,

(3.20)

where V4 = Vol(S3) = 2π2 is the volume of S3. These formulae constitute a complete

specification of the thermodynamics of stationary rotating conformal fluids on S3.

3.5 Potentials

In the previous subsection we have evaluated all the thermodynamic charges of our rotat-

ing fluid solutions. It is also useful to evaluate the chemical potentials corresponding to

these solutions. To be specific we define these chemical potentials via the grand canonical

partition function defined in the introduction

Zgc = Tr exp

(
1

T
(−H + ΩaLa + ζiRi)

)
= exp

(
−E − TS − ΩaLa − ζiRi

T

)
, (3.21)

where the last expression applies in the thermodynamic limit. In other words

T =

(
∂E

∂S

)

Lb,Rj

, Ωa =

(
∂E

∂La

)

S,Lb,Rj

, ζi =

(
∂E

∂Ri

)

S,Lb,Rj

. (3.22)

It is easy to verify that9

T = τ , Ωa = ωa , ζi = τνi . (3.23)

Note that T , Ωa and ζi are distinct from T , ωa and µi. While the former quantities

are thermodynamic properties of the whole fluid configuration, the latter quantities are

9We can express dE − τdS − ωadLa − τνidRi in terms of dτ,dωa, dνi and check that it vanishes, or we

can check the Legendre transformed statement d(E − τS − ωaLa − τνiRi) = −Sdτ − Ladωa −Rid(τνi).

– 14 –



J
H
E
P
0
9
(
2
0
0
8
)
0
5
4

local thermodynamic properties of the fluid that vary on the S3. In a similar fashion, the

energy E of the solution is, of course, a distinct concept from the local rest frame energy

density ρ which is a function on the sphere. In particular, E receives contributions from

the kinetic energy of the fluid as well as its internal energy, E .

3.6 Grand canonical partition function

The grand canonical partition function (3.21) is easily computed; we find

lnZgc =
V4T

3h(ζ/T )

(1 − Ω2
1)(1 − Ω2

2)
, (3.24)

where V4 = V (S3) = 2π2 is the volume of S3.

In other words, the grand canonical partition function of the rotating fluid is obtained

merely by multiplying the same object for the non-rotating fluid by a universal angular

velocity dependent factor.

3.7 Validity of fluid mechanics

A systematic way to estimate the domain of validity of the Navier-Stokes equations would

be to list all possible higher order corrections to these equations, and to check under what

circumstances the contributions of these correction terms to the stress tensor and currents

are small compared to the terms we have retained. Rather than carrying out such a detailed

(and worthwhile) exercise, we present in this section a heuristic physical estimate of the

domain of validity of fluid dynamics.

Consider a fluid composed of a collection of interacting ‘quasiparticles’, that move at

an average speed vp and whose collisions are separated (on the average) by the distance lmfp

in the fluid rest frame. Consider a particular quasiparticle that undergoes two successive

collisions: the first at the coordinate location x1 and subsequently at x2. In order for the

fluid approximation to hold, it must be that

1. The fractional changes in thermodynamic quantities between the two collision points

(e.g. [T (x1)− T (x2)]/T (x1)) are small. This condition is necessary in order for us to

assume local thermal equilibrium.

2. The distance between the two successive collisions is small compared to the curva-

ture/compactification scales of the manifold on which the fluid propagates. This

approximation is necessary, for example, in order to justify the neglect of curvature

corrections to the Navier-Stokes equations.

Let us now see when these two conditions are obeyed on our solutions. Recall that

the local temperatures in our solutions take the form T = Tγ where T is the overall

temperature of the solution. If we treat the free path lmfp as a function of temperature

and chemical potentials, conformal invariance implies that

lmfp(T , νi) =
1

γ
lmfp(T, νi) .

– 15 –
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Hence, the first condition listed above is satisfied when the fractional variation in (say)

the temperature is small over the rest frame mean free path lmfp(T , νi), i.e. provided

lmfp(T, νi)

γ
≪ γ

(
∂γ

∂θ

)−1

, (3.25)

which must hold for all points of the sphere.10 The strictest condition one obtains from

this is

lmfp(T, νi) ≪
1∣∣∣

√
1 − ω2

1 −
√

1 − ω2
2

∣∣∣
. (3.26)

It turns out that the second condition listed above is always more stringent, espe-

cially when applied to fluid quasiparticles whose rest frame motion between two colli-

sions is in the same direction as the local fluid velocity. It follows from the formulae of

Lorentz transformations that the distance on the sphere between two such collisions is

lmfp(T , νi)γ(1+ v/vp) = lmfp(T, νi)(1+ v/vp), where vp is the quasiparticle’s velocity in the

rest frame of the fluid and v the fluid velocity. As the factor (1+v/vp) is bounded between

1 and 2, we conclude that the successive collisions happen at distances small compared to

the radius of the sphere provided

lmfp(T, νi) ≪ 1 . (3.27)

Hence, we conclude that the condition (3.27) (which is always more stringent

than (3.26)) is the condition for the applicability of the equations of fluid mechanics.

Of course the model (of interacting quasiparticles) that we have used to obtain (3.27)

need not apply to the situations of our interest. However the arguments that led to (3.27)

were essentially kinematical which leads us to believe that the result will be universal.

Nonetheless, it would be useful to verify this result by performing the detailed analysis

alluded to at the beginning of this subsection.

4. Rotating fluids on spheres of arbitrary dimension

We now generalise the discussion of the previous section to the study of conformal fluids

on spheres of arbitrary dimension.

Let us embed S2n in R
2n+1 as

x2a−1 =

(
a−1∏

b=1

cos θb

)
sin θa cosφa ,

x2a =

(
a−1∏

b=1

cos θb

)
sin θa sinφa ,

x2n+1 =

(
n∏

b=1

cos θb

)
,

(4.1)

10Recall that all variations in the temperature are perpendicular to fluid velocities, so that the typical

scale of variation in both the rest frame and the lab frame coincide.
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Where θn ∈ [0, π], all other θa ∈ [0, π2 ] and φa ∈ [0, 2π). Any products with the upper limit

smaller than the lower limit should be set to one. Although we appear to have specialised to

even dimensional spheres above, we can obtain all odd dimensional sphere, S2n−1, simply

by setting θn = π/2 in all the formulae of this section.

The metric on S2n× time is given by

ds2 = −dt2 +

n∑

a=1

(
a−1∏

b=1

cos2 θb

)
dθ2

a +

n∑

a=1

(
a−1∏

b=1

cos2 θb

)
sin2 θadφ

2
a . (4.2)

We choose a rigidly rotating velocity

ut = γ uθa = 0 uφa = γωa

γ = (1 − v2)−1/2 v2 =
n∑

a=1

(
a−1∏

b=1

cos2 θb

)
sin2 θaω

2
a

(4.3)

As in section 3.2, the equations of motion are solved, without dissipation, by setting

T
γ

= τ = constant,
µi
T = νi = constant, (4.4)

which gives the densities

ρ = (d− 1)P = (d− 1)τdγdh(νi),

s = τd−1γd−1[dh(ν) − νihi(ν)],

ri = τd−1γd−1hi(ν),

(4.5)

This gives a stress tensor

T tt = τdA(dγd+2 − γd) T tφa = T φat = τdAdγd+2ωa

T θaθa = τdAγd

(
a−1∏

b=1

sec2 θb

)

T φaφa = τdA

[
dγd+2ω2

a + γd

(
a−1∏

b=1

sec2 θb

)
csc2 θa

]
T φaφb = τdAdγd+2ωaωb

(4.6)

and currents

J tS = τd−1Bγd JθaS = 0 JφaS = τd−1Bγdωa ,

J ti = τd−1Ciγ
d Jθai = 0 Jφai = τd−1Ciγ

dωa ,
(4.7)

where

A = h(ν) ,

B = dh(ν) − νihi(ν) ,

Ci = hi(ν) .

(4.8)
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Integrating these gives11

E =
Vd τ

d h(ν)∏
b(1 − ω2

b )

[
2
∑

a

ω2
a

1 − ω2
a

+ d− 1

]
,

S =
Vd τ

d−1[dh(ν) − νihi(ν)]∏
b(1 − ω2

b )
,

La =
Vd τ

d h(ν)∏
b(1 − ω2

b )

[
2ωa

1 − ω2
a

]
,

Ri =
Vd τ

d−1 hi(ν)∏
b(1 − ω2

b )
,

(4.9)

where

Vd = Vol(Sd−1) =
2·πd/2
Γ(d/2)

.

Differentiating these gives

T = τ Ωa = ωa ζi = τνi . (4.10)

and the grand partition function

lnZgc =
Vd T

d−1 h(ζ/T )∏
b(1 − Ω2

b)
. (4.11)

As in the previous subsection, the fluid dynamical approximation is expected to be valid

provided lmfp(T, νi) ≪ 1.

In appendix B, we have computed the thermodynamics of a free charged scalar field

on a sphere, and compared with the general results of this section.

5. Comparison with uncharged black holes in arbitrary dimensions

In the rest of this paper, we will compare the predictions from fluid dynamics derived

above with the thermodynamics, stress tensors and charge distributions of various classes

of large rotating black hole solutions in AdS spaces. We start with uncharged rotating

black holes on D dimensional AdS spaces (where D is arbitrary), which are dual to rotating

configurations of uncharged fluids on spheres of dimension (D − 2).

11In deriving these formulae we have ‘conjectured’ that
R
Sd−1 γ

d = Vd
Q[d/2]

b=1
(1−ω2

b
)
. It is easy to derive this

formula for odd spheres. We have also analytically checked this formula for S2 and S4. We are ashamed,

however, to admit that we have not yet found an analytic derivation of this integral for general even spheres.
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5.1 Thermodynamics and stress tensor from fluid mechanics

In case of uncharged fluids the function h(ν) in the above section is a constant h(ν) = h.

Therefore hi(ν) = ∂h(ν)
∂νi

are all equal to zero. It follows from equations (4.9) and (4.10) that

E =
Vd T

d h∏
b(1 − Ω2

b)

[
∑

a

2Ω2
a

1 − Ω2
a

+ d− 1

]
,

S =
Vd T

d−1hd∏
b(1 − Ω2

b)
,

La =
Vd T

d h∏
b(1 − Ω2

b)

[
2Ωa

1 − Ω2
a

]
,

Ri = 0 .

(5.1)

The partition function is given by

lnZgc =
Vd T

d−1 h∏
b(1 − Ω2

b)
. (5.2)

The stress tensor becomes

T tt = hT d(dγd+2 − γd) T tφa = T φat = hT ddγd+2Ωa

T θaθa = hT dγd

(
a−1∏

b=1

sec2 θb

)

T φaφa = hT d

[
dγd+2Ω2

a + γd

(
a−1∏

b=1

sec2 θb

)
csc2 θa

]
T φaφb = hT ddγd+2ΩaΩb .

(5.3)

The mean free path in fluid dynamics can be estimated by taking the ratio of shear

viscosity to energy density. As mentioned in the introduction, for fluids with gravity duals

we can equivalently estimate lmfp by taking the ratio of entropy to 4π times the energy

(because of the universal relation s = 4πη).

lmfp(T, ν)|Ω=0 ∼
[
S

4πE

]

Ω=0

=
d

4πT (d − 1)
. (5.4)

Consequently the expansion in lmfp translates simply to an expansion in inverse powers of

the temperature of our solutions.

5.2 Thermodynamics from black holes

The most general solution for uncharged rotating black holes in AdSD was obtained in [15,

16]. These solutions are labelled by the n+ 1 parameters12 ai and r+ (these are related to

the n angular velocities and the horizon radius (or equivalently the mass parameter) of the

12Recall that n denotes the number of commuting angular momenta and is given by the expression

n = rank [SO(D − 1)] on AdSD.
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black holes). The surface gravity κ and the horizon areaA of these black holes are given by13

κ =





r+(1 + r2+)
n∑

i=1

1

r2+ + a2
i

− 1

r+
when D = 2n + 1 ,

r+(1 + r2+)
n∑

i=1

1

r2+ + a2
i

− 1 − r2+
2r+

when D = 2n + 2 ,

A =





Vd
r+

n∏

i=1

r2+ + a2
i

1 − a2
i

when D = 2n+ 1 ,

Vd

n∏

i=1

r2+ + a2
i

1 − a2
i

when D = 2n+ 2 .

(5.5)

We will be interested in these formulae in the limit of large r+. In this limit the parameter

m (which appears in the formulae of [15, 16]) and the temperature T = κ/2π are given as

functions of r+ by

T =

[
(D − 1)r+

4π

] (
1 + O(1/r2+)

)
,

2m = rD−1
+

(
1 + O(1/r2+)

)
.

(5.6)

From these equations, it follows that the parameter m is related to the temperature T as

2m = TD−1

[
4π

D − 1

]D−1 (
1 + O(1/T 2)

)
. (5.7)

To leading order in r+, the thermodynamic formulae take the form

Ωi = ai ,

E =
VD−1T

D−1

16πGD
∏n
j=1(1 − a2

j )

[
4π

D − 1

]D−1
[

n∑

i=1

2a2
i

1 − a2
i

+D − 2

]
,

Li =
VD−1T

D−1

16πGD
∏n
j=1(1 − a2

j )

[
4π

D − 1

]D−1 [ 2ai
1 − a2

i

]
,

S =
VD−1T

D−2(D − 1)

16πGD
∏n
j=1(1 − a2

j )

[
4π

D − 1

]D−1

,

Ri = 0 ,

(5.8)

where VD−1 is the volume of SD−2 and GD is Newton’s constant in D dimensions. The

corrections to each of these expressions are suppressed by factors of O(1/r2+) = O(1/T 2)

relative to the leading order results presented above (i.e. there are no next to leading order

corrections).

These thermodynamic formulae listed in (5.8) are in perfect agreement with the fluid

mechanics expressions in (5.1) upon making the following identifications: the spacetime

13In the expression of κ for even dimension, the sign inside the second term in equation (4.7) of [16] is

different form the sign given in equation (4.18) of [15]; we believe the latter sign is the correct one.
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dimensions of the boundary theory d = D − 1, the black hole angular velocities ai are

identified with Ωa and the constant h is identified as

h =
1

16πGD

[
4π

D − 1

]D−1

. (5.9)

In the next subsection, we will see that this agreement goes beyond the global thermo-

dynamic quantities. Local conserved currents are also in perfect agreement with the black

hole physics.

5.3 Stress tensor from rotating black holes in AdSD

The uncharged rotating black holes both in odd dimensions (D = 2n+ 1) and even dimen-

sions (D = 2n+ 2) are presented in detail in [15], equation (E-3) and [16], equation (4.2) .

After performing some coordinate transformations (see appendix C.1) that take the metric

of that paper to the standard form of AdSD at the boundary, we have computed the stress

tensor of this solution.

Our calculation, presented in appendix C.1 uses the standard AdS/CFT dictionary. In

more detail, we foliate the solution in boundary spheres, compute the extrinsic curvature

Θµ
ν of these foliations near the boundary, subtract off the appropriate counter terms con-

tributions [3 – 10], and finally multiply the answer by the rD−1 to obtain the stress tensor

on a unit sphere.

We find that the stress tensor so calculated takes the form (see appendix C.1)

Πtt =
2m

16πGD
[(D − 1)γD+1 − γD−1]

Πφaφa =
2m

16πGD
[(D − 1)γD+1ω2

a + γD−1µ−2
a ]

Πtφa = Πφat =
2m

16πGD
(D − 1)γD+1ωa

Πφaφb = Πφbφa =
2m

16πGD
γD+1ωaωb

Πθaθa =
2m

16πGD
γD−1

(
a−1∏

b=1

sec2 θb

)
.

(5.10)

Here γ−2 = 1 −∑n
a=1 ω

2
aµ

2
a where µa =

(∏a−1
b=1 cos θb

)
sin θa.

Note that the functional form of these expressions (i.e. dependence of various com-

ponents of the stress tensor on the coordinates of the sphere) agrees exactly with the

predictions of fluid dynamics even at finite values of r+. In the large r+ limit (using (5.7)

and (5.9)) , we further have

Ωa = ωa ,

D − 1 = d ,

2m

16πGD
= T dh .
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With these identifications, (5.10) coming from gravity agrees precisely with (5.3) from

fluid mechanics.

We proceed now to estimate the limits of validity of our analysis above. From the

black hole side, since we have expanded the formulae of black hole thermodynamics in

1/r+ to match them with fluid mechanics, this analysis is valid if r+ is large. From the

fluid mechanics side, we expect corrections of the order of lmfp. To estimate lmfp in this

case, we substitute (5.6) into (5.4) to get

lmfp ∼ 1

r+(d− 1)
≪ 1 .

Hence, we see that the condition from fluid mechanics is exactly the same as taking large

horizon radius limit: the expansion of black hole thermodynamics in a power series in 1
r+

appears to be exactly dual to the fluid mechanical expansion as a power series in lmfp.

6. Comparison with black holes in AdS5 × S5

LargeN , N = 4 Yang-Mills, at strong ’t Hooft coupling on S3×R, is dual to classical gravity

on AdS5×S5. Hence, we can specialise the general fluid dynamical analysis presented above

to the study of equilibrium configurations of the rotating N = 4 plasma on S3 and then

compare the results with the physics of classical black holes in AdS5 × S5.

Large black holes in AdS5 × S5 are expected to appear in a six parameter family,

labelled by three SO(6) Cartan charges (c = 3), two SO(4) rotations (n = 2) and the mass.

While the most general black hole in AdS5 × S5 has not yet been constructed, several

sub-families of these black holes have been determined.

In this section, we will compare the thermodynamic predictions of fluid mechanics with

all black hole solutions that we are aware of and demonstrate that the two descriptions

agree in the large horizon radius limit. For one class of black holes we will also compare

black hole stress tensor and charge distributions with that of the fluid mechanics and once

again find perfect agreement (in the appropriate limit).

We begin this section with a review of the predictions of fluid mechanics for strongly

coupled N = 4 Yang-Mills on S3. Note that this is a special case of the conformal fluid

dynamics of previous sections with d = D − 1 = 4.

6.1 The strongly coupled N = 4 Yang-Mills Plasma

The gravity solution for SO(6) charged black branes (or, equivalently, large SO(6) charged

but non-rotating black holes in AdS5 × S5) has been used to extract the equation of state

of N = 4 Yang-Mills (see [29, section 2] for the thermodynamic expressions in the infinite

radius limit).

Rather than listing all the thermodynamic variables, we use the earlier parametrisation

of (2.12) to state our results. The thermodynamics of the N = 4 Yang-Mills is described
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by the following equations14

h(ν) =
P
T 4

= 2π2N2

∏
j(1 + κj)

3

(2 +
∑

j κj −
∏
j κj)

4
,

νi =
µi
T =

2π
∏
j(1 + κj)(

2 +
∑

j κj −
∏
j κj

)
√
κi

1 + κi
,

hi(ν) =
ri
T 3

=
2πN2

∏
j(1 + κj)

2

(
2 +

∑
j κj −

∏
j κj

)3

√
κi .

(6.1)

where the auxiliary parameters κi have a direct physical interpretation in terms of entropy

and charge densities (see section 2 of [29])

κi =
4π2R2

i

S2
. (6.2)

κi are constrained by κi ≥ 0 and by the condition15

2 +
∑

j κj −
∏
j κj∏

j(1 + κj)
=



∑

j

1

1 + κj
− 1


 ≥ 0.

It follows from (6.2) that κi is finite for configurations with finite charge and non-zero

entropy. The configurations with κi → ∞ (for any i) are thermodynamically singular,

since in this limit, the ith charge density is much larger than the entropy density. Hence,

in the following, we shall demand that κi be finite.

The general analysis presented before now allows us to construct the most general

stationary solution of the N = 4 fluid rotating on a 3-sphere. The thermodynamic formulae

and currents of these solutions follow from (3.18), (3.17) and (3.20) upon setting

A = h(ν) = 2π2N2

∏
j(1 + κj)

3

(2 +
∑

j κj −
∏
j κj)

4
,

B = 4h(ν) − νihi(ν) = 4π2N2

∏
j(1 + κj)

2

(2 +
∑

j κj −
∏
j κj)

3
,

Ci = hi(ν) = 2πN2√κi
∏
j(1 + κj)

2

(2 +
∑

j κj −
∏
j κj)

3
,

(6.3)

which leads to

ζi =
2πT

∏
j(1 + κj)(

2 +
∑

j κj −
∏
j κj

)
√
κi

1 + κi
, (6.4)

and

lnZgc =
2π2N2V4T

3
∏
j(1 + κj)

3

(1 − Ω2
1)(1 − Ω2

2)
(
2 +

∑
j κj −

∏
j κj

)4 , (6.5)

14Note that our convention for the gauge field differs from [29, section 2] by a factor of
√

2.
15Which is obtained by requiring that the temperature T ≥ 0 in the expression for T in [29, section 2].
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where we have used the notation V4 = Vol(S3) = 2π2 as before.

As before, the mean free path in fluid mechanics can be estimated as

lmfp ∼
[
S

4πE

]

Ω=0

=
B

(d− 1)4πTA
=

(
2 +

∑
j κj −

∏
j κj

)

6πT
∏
j(1 + κj)

=
1

6πT



∑

j

1

1 + κj
− 1


 .

(6.6)

6.2 The extremal limit

The strongly coupled N = 4 Yang-Mills plasma has an interesting feature; it has interesting

and nontrivial thermodynamics even at zero temperature. In this subsection, we investigate

this feature and point out that it implies the existence of interesting zero temperature

solutions of fluid dynamics which will turn out to be dual to large, extremal black holes.

6.2.1 Thermodynamics

In the above section, we presented the thermodynamics of strongly coupled N = 4 Yang-

Mills plasma in terms of the parameters κi. These parameters are constrained by the

conditions κi ≥ 0 and
∑

i
1

1+κi
≥ 1 with κi finite. In order to visualise the allowed range

over which the variables κi’s can vary, it is convenient to define a new set of variables

Xi =
1

1 + κi
, Xi = X, Y, Z,

χ =
T

X + Y + Z − 1
.

(6.7)

The constraints κi ≥ 0 and
∑

i
1

1+κi
≥ 1 with κi finite translate into the constraints

0 < Xi ≤ 1 and X +Y +Z ≥ 1 . Geometrically, this is just the statement that Xi’s can lie

anywhere inside the cube shown in figure 1, away from the planes Xi = 0 and on or above

the plane X + Y + Z = 1.

The energy density, the entropy density and the charge densities of the Yang-Mills

plasma may be rewritten as a function of X,Y,Z and χ as

ρ = 6π2N2XY Zχ4, s = 4π2N2XY Zχ3,

ri = 2πN2XY Zχ3

√
1 −Xi

Xi
.

(6.8)

The condition for the validity of fluid mechanics becomes

lmfp ∼ 1

6πχ
≪ 1 or χ≫ 1 . (6.9)

Consider now the case in which χ is large, but finite and X,Y,Z take values close to

the interior of the triangle ABC in figure 1. From (6.7) and (6.8), it is evident that this

is equivalent to taking an extremal limit T → 0 with appropriate chemical potentials. All

thermodynamic quantities listed above are smooth in this limit and the fluid mechanics

continues to be valid.
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Z

Y

X

O

A

B

C

P

Q

R

S

Figure 1: The space of allowed κi’s. The axes correspond to X = 1

1+κ1
, Y = 1

1+κ2
and Z = 1

1+κ3
.

The Xi’s can lie anywhere in the cube outside the “extremal” plane X + Y + Z = 1.

The N = 4 Yang-Mills plasma with three nonzero R-charges always has a nonsingular

extremal limit. In the case that one of the charges say r3 is zero, then we are constrained

to move on the X3 = 1 plane in the space of Xi’s. Hence, we can never approach the

‘extremal triangle’ X + Y + Z = 1.16 Thus, we have no nonsingular extremal limit if any

one of the three R-charges is zero. By a similar argument, no nonsingular extremal limit

exists if two of the R-charges were zero.

We note that Gubser and Mitra have previously observed that charged black branes

near extremality are sometimes thermodynamically unstable [30]. Although we have not

performed a careful analysis of the thermodynamic stability of the charged fluids we study

in this paper (see however [29]), we suspect that these fluids all have Gubser-Mitra type

thermodynamic instabilities near extremality. If this is the case, the near extremal fluid

solutions we study in this section and the next — and the black holes that these are

dual to — are presumably unstable to small fluctuations. Whether stable or not, these

configurations are valid solutions of fluid dynamics. We postpone a serious discussion of

stability to future work.17

6.2.2 Fluid mechanics

The thermodynamic expressions for the charges of a rotating Yang-Mills plasma take the

form

E =
2π2N2XY ZV4

(1 − ω2
1)(1 − ω2

2)

[
2ω2

1

1 − ω2
1

+
2ω2

2

1 − ω2
2

+ 3

] [
T

X + Y + Z − 1

]4

,

L1 =
2π2N2XY ZV4

(1 − ω2
1)(1 − ω2

2)

[
2ω1

1 − ω2
1

] [
T

X + Y + Z − 1

]4

,

L2 =
V4τ

4A

(1 − ω2
1)(1 − ω2

2)

[
2ω2

1 − ω2
2

] [
T

X + Y + Z − 1

]4

, (6.10)

16Remember that we have already excluded, on physical grounds, the point X1 = X2 = 0, X3 = 1 which

lies in the intersection of X3 = 1 plane and the extremal plane X + Y + Z = 1.
17We thank Sangmin Lee for discussion of these issues.
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S =
4π2N2XY ZV4

(1 − ω2
1)(1 − ω2

2)

[
T

X + Y + Z − 1

]3

,

Ri =
2πN2XY ZV4

(1 − ω2
1)(1 − ω2

2)

[
T

X + Y + Z − 1

]3√1 −Xi

Xi
,

and the mean free path

lmfp ∼ X + Y + Z − 1

6πT
≪ 1 . (6.11)

We see that all thermodynamical charges of our rotating fluid configurations are nonsingu-

lar, and that fluid mechanics is a valid approximation for these solutions, in the extremal

limit described in the previous subsection, provided only that χ≫ 1.18

The solution so obtained describes a rotating fluid whose local temperature vanishes

everywhere, but whose rest frame charge density is a function of location on the S3 (it

scales like γ3). As we will see below these extremal configurations of rotating fluid on S3

are exactly dual to large, rotating, extremal black holes in AdS5.

6.3 Predictions from fluid mechanics in special cases

As mentioned in the beginning of this section, the most general black hole in AdS5 × S5

has not yet been constructed, but several subfamilies of these black holes are known. To

facilitate the comparison between fluid mechanics on S3 on one hand and these subfamilies

of black holes on the other, in this subsection, we specialise the general predictions of the

previous subsection to various specific cases.

6.3.1 All SO(6) charges equal: arbitrary angular velocities

Consider first the case of a fluid with equal SO(6) charges (with the rotational parameters

arbitrary). That is we set κ1 = κ2 = κ3 = κ in the general formulae above. Noting that

(2+3κ−κ3) = (κ+1)2(2−κ) we find that the stress tensor and currents are given by (3.17)

and (3.18) with

A =
2π2N2(1 + κ)

(2 − κ)4
,

B =
4π2N2

(2 − κ)3
,

Ci =
2πN2√κ
(2 − κ)3

.

(6.12)

The thermodynamics can be summarised by

ζi =
2πT

√
κ

(2 − κ)
, lnZgc(T,Ω, ζ) =

2π2N2V4T
3(1 + κ)

(1 − Ω2
1)(1 − Ω2

2)(2 − κ)4
. (6.13)

18In greater generality, in order for fluid mechanics to be a valid approximation for our solutions it is

necessary that either T ≫ 1 (which is by itself sufficient) or that X+Y +Z−1 → 0 (under which condition

the ratio χ of the previous section must be large and (conservatively) none of X, Y or Z be very small).
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The formula for mean free path (6.6) reduces to

lmfp ∼ 1

6πT

[
2 − κ

1 + κ

]
. (6.14)

Let us specialise the extremal thermodynamics of N = 4 Yang-Mills fluid presented

before to this case. In terms of the variables introduced in section 6.2, we have X = Y = Z

which is a straight line in the Xi space. The extremal limit is obtained when this line cuts

the extremal plane X + Y +Z = 1 , i.e, at the point X = Y = Z = 1/3. This corresponds

to the extremal limit κ→ 2.

More explicitly, in the extremal limit

T → 0 , (2 − κ) =
T

χ
, (6.15)

with χ large but finite. The thermodynamic quantities obtained by differentiating the

grand partition function (6.28),

S =
2N2π2V4T

3

(2 − κ)3
1

(1 − a2)(1 − b2)

L1 =
4N2π2V4T

4(1 + κ)

(2 − κ)4
a

(1 − a2)2(1 − b2)

L2 =
4N2π2V4T

4(1 + κ)

(2 − κ)4
b

(1 − a2)(1 − b2)2

R =
2πN2V4T

3√κ
(2 − κ)3

1

(1 − a2)(1 − b2)

E =
2π2N2V4T

4(1 + κ)

(2 − κ)4
[4 − (1 + a2)(1 + b2)]

(1 − a2)2(1 − b2)2
,

(6.16)

are all smooth; and they describe a fluid configuration whose energy, angular momentum,

charge and entropy scale as N2χ4, N2χ4, N2χ3 and N2χ3 respectively.

6.3.2 Independent SO(6) charges: equal rotations

Consider the special case ω1 = ω2 = Ω (the three SO(6)) chemical potentials are left

arbitrary). The stress tensor and currents are given by (3.17) and (3.18) with

A = 2π2N2

∏
j(1 + κj)

3

(2 +
∑

j κj −
∏
j κj)

4
,

B = 4π2N2

∏
j(1 + κj)

2

(2 +
∑

j κj −
∏
j κj)

3
,

Ci = 2πN2√κi
∏
j(1 + κj)

2

(2 +
∑

j κj −
∏
j κj)

3
,

γ =
1√

1 − Ω2
, v = Ω .

(6.17)
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The thermodynamics can be summarised by

ζi =
2πT

∏
j(1 + κj)(

2 +
∑

j κj −
∏
j κj

)
√
κi

1 + κi
, lnZgc =

2π2N2V4T
3
∏
j(1 + κj)

3

(1 − Ω2)2
(
2 +

∑
j κj −

∏
j κj

)4 . (6.18)

The expression for mean free path (6.6) reduces to

lmfp ∼ 1

6πT



∑

j

1

1 + κj
− 1


 . (6.19)

The extremal limit
∑

j(1+κj)
−1 → 1 with all κi kept finite, is nonsingular, and yields

solutions that are well described by fluid dynamics when lmfp is small.

6.3.3 Two equal nonzero SO(6) charges: arbitrary angular velocities

Consider now the case when κ1 = κ2 = κ, κ3 = 0. We find that the stress tensor and

currents are given by (3.17) and (3.18) with

A =
π2N2(1 + κ)2

8
,

B =
π2N2(1 + κ)

2
,

C1 = C2 =
πN2√κ(1 + κ)

4
,

C3 = 0 .

(6.20)

The thermodynamics can be summarised by

ζ1 = ζ2 = πT
√
κ , lnZgc(T,Ω, ζ) =

π2N2V4T
3(1 + κ)2

8(1 − Ω2
1)(1 − Ω2

2)
. (6.21)

The expression for mean free path, from (6.6), is

lmfp ∼ 1

3πT (1 + κ)
. (6.22)

It follows from (6.22) that fluid mechanics is a good approximation when T is large. Though

this equation would appear to suggest that the fluid dynamical approximation is also valid

(for instance) at fixed T and large κ, we have emphasised before, the limit of large κ is

thermodynamically suspect. Conservatively, thus, fluid mechanics applies only at large

temperatures.
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6.3.4 A single nonzero charge: arbitrary angular velocities

We now set κ1 = κ, κ2 = κ3 = 0 leaving angular velocities arbitrary. The stress tensor and

currents are given by (3.17) and (3.18) with

A =
2π2N2(1 + κ)3

(2 + κ)4
,

B =
4π2N2(1 + κ)2

(2 + κ)3
,

C1 =
2πN2√κ(1 + κ)2

(2 + κ)3
,

C2 = C3 = 0 .

(6.23)

The thermodynamics can be summarised by

ζ =
2πT

√
κ

(2 + κ)
, lnZgc(T,Ω, ζ) =

2π2N2V4T
3(1 + κ)3

(1 − Ω2
1)(1 − Ω2

2)(2 + κ)4
. (6.24)

The mean free path, from (6.6) is given by

lmfp ∼ 1

6πT

[
2 + κ

1 + κ

]
. (6.25)

As in the previous subsection, this particular case does not admit thermodynamically

nonsingular zero temperature (or extremal) configurations.

6.4 Black holes with all R-charges equal

Having derived the fluid mechanics predictions for various different black holes, we now

proceed to examine the black hole solutions. First, we will focus on the case of black holes

with arbitrary angular momenta in AdS5 but equal SO(6) charges. The relevant solution

has been presented in [18].

6.4.1 Thermodynamics

The black holes presented in [18] are labelled by two angular velocities a, b, and three

more parameters q,m and r+. These five parameters are not all independent; they are

constrained by one equation relating horizon radius to the parameter m (∆r = 0 in that

paper). We thus have a four parameter set of black holes.19

The relatively complicated black hole thermodynamic formulae of [18] simplify if the

parameter r+ (which may be interpreted as the horizon radius) is taken to be large. In

particular, consider the limit

r+ ≫ 1 and y = q/r3+ fixed. (6.26)

In this limit, to leading order,we have

T =
r+
2π

(2 − y2) ,

2m = r4+(1 + y2) .
(6.27)

19We work in conventions in which the AdS radius and hence the parameter g of [18] is set to unity.
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From the positivity of T and r+ it follows immediately that 0 ≤ y2 ≤ 2.

Multiplying all thermodynamic integrals in [18] by
R3

AdS
G5

= 2N2

π and noting that our

charge R is equal to their Q/
√

3, the black hole thermodynamic formulae reduce to (to

leading order in r+)

Ω1 = a ,

Ω2 = b ,

ζi =
2πyT

(2 − y2)
,

lnZgc =
2π2N2(1 + y2)

(2 − y2)4

[
V4T

3

(1 − Ω2
1)(1 − Ω2

2)

]
.

(6.28)

Once we identify the black hole parameter y2 with the fluid parameter κ, these formula

take precisely the form of fluid mechanics formulae (6.13) with the equation of state

coming from (6.12).20

We can now compute the fluid mechanical mean free path lmfp as a function of bulk

black hole parameters. From equations (6.27) and (6.14), we find (assuming that r+ is large)

lmfp ∼ 1

3r+(1 + κ)
.

As 1 + κ = 1 + y2 is bounded between 1 and 2, it appears from this equation that the

expansion in powers of 1/r+ is simply identical to the fluid dynamical expansion in powers

of lmfp. This explains why black hole thermodynamics agrees with the predictions of the

Navier-Stokes equations when (and only when) r+ is large.

6.4.2 Stress tensor and charge currents

In appendix C.2, we have computed the boundary stress tensor corresponding to this black

hole solution (by foliating the space into S3 ’s at infinity, computing the extrinsic curvature

20The functions h(ν) and its derivatives have simple expressions as functions of bulk parameters. Com-

paring with (5.9) we find

h(ν) =
2N2

π

»
2m

16πT 4

–
=

m

8πG5T 4

hi(ν) =
2N2

π

q

8πT 3
=

q

8πG5T 3

(6.29)
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of these sections, and subtracting the appropriate counterterms). At leading order in 1
r+

Πtt =
m

8πG5
γ4(4γ2 − 1)

Πφφ =
m

8πG5
γ4

(
4γ2a2 +

1

sin2 θ

)

Πψψ =
m

8πG5
γ4

(
4γ2a2 +

1

cos2 θ

)

Πtφ = Πφt =
4m

8πG5
aγ6

Πtψ = Πψt =
4m

8πG5
bγ6

Πφψ = Πψφ =
4m

8πG5
abγ6

Πθθ =
m

8πG5
γ4.

(6.30)

In a similar fashion, the charge currents on S3 may be computed from Jµi = −r4gµνAν |r→∞
where the indices µ, ν are tangent to the S3× time foliations and and the bulk gauge field

Aν is given in the equation (2) of [18]. We find

J t1 = J t2 = J t3 =
q

8πG5
γ4

Jθ1 = Jθ2 = Jθ3 = 0

Jφ1 = Jφ2 = Jφ3 =
q

8πG5
γ4a

Jψ1 = Jψ2 = Jψ3 =
q

8πG5
γ4b .

(6.31)

Using (6.29), it is evident that the expressions in (6.31) are in precise agreement with the

predictions (4.7) of fluid dynamics.

6.5 Black holes with independent SO(6) charges and two equal rotations

The most general (five parameter) black hole solutions with the two angular velocities set

equal can be found in [17]. The thermodynamics of these black holes was computed in [23].

The black hole solutions depend on the parameters δ1, δ2, δ3, a,m, r+ that are related

by the equation Y (r) = 0. The thermodynamics of these black holes simplify in the limit

r+ ≫ 1 ,
2ms2i
r2+

= Hi − 1 fixed.

Then solving the equation Y = 0 in this limit, one can express m as

2m =
(H1H2H3)r

4
+

(1 − a2)
.
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The various thermodynamic quantities in this limit21 (after multiplying integrals by
R3

AdS
G5

= 2N2

π ) can be summarised by

Ω1 = Ω2 = a , T =
r+

√
1 − a2

2π



∑

j

H−1
j − 1



∏

j

√
Hj ,

ζi = r+
√

1 − a2

(√
Hi − 1

Hi

)∏

j

√
Hj =

2πT∑
j H

−1
j − 1

(√
Hi − 1

Hi

)
,

lnZgc =
πN2r3+

2
√

1 − a2

( ∏
j

√
Hj∑

j H
−1
j − 1

)
=

4π4N2T 3

(1 − Ω2)2
(∏

j Hj

)(∑
jH

−1
j − 1

)4

(6.32)

These expressions match with (6.18) if κi is identified with Hi − 1, demonstrating perfect

agreement between black hole and fluid dynamical thermodynamics.

Translating the estimate for the mean free path into the black hole variables, we find

lmfp ∼ 1

3r+
∏
j

√
Hj

≪ 1 ,

(an equation that is valid only in the large r+ limit). Notice that lmfp is automatically

small in the large r+ limit, explaining why black hole thermodynamics agrees with the

predictions of the Navier-Stokes equations in this limit.

Notice that the fluid mechanical expansion parameter lmfp appears to differ from

the expansion parameter of black hole thermodynamics used above, 1/r+, by a factor

of 1/
√∏

iHi. When the three charges of the black hole are in any fixed ratio a : b : c, with

none of a, b or c either zero or infinity, it may easily be verified that this additional factor

is bounded between a nonzero number (which depends on a, b, c) and unity. In this case

the two expansion parameters - lmfp and 1/r+ - are essentially the same.

However when one of the black hole charges (say R1) vanishes H2 and/or H3

can formally take arbitrarily large values. In this extreme limit lmfp appears to differ

significantly from the bulk expansion parameter 1/r+. However large Hi implies large κi,

a limit that we have argued above to be thermodynamically singular. Keeping away from

the suspicious large κi limit, it is always true that lmfp is essentially identical 1/r+, the

parameter in which we have expanded the formulas of black hole thermodynamics.

Finally we emphasise that the black hole studied in this subsection include a large class

of perfectly nonsingular zero temperature or extremal black holes with finite κi and large

r+ which perfectly reproduce the predictions of extremal fluid mechanics of section 6.2.

In more detail, the thermodynamical quantities of a general solution in this subsection

21We believe that [23] has a typo: (3.10) should read Φi = 2m
r2Hi

(sici +
1
2
aΩ(cisjsk − sicjck)). Note that

they also use coordinates ψ = φ1 + φ2 and ϕ = φ1 − φ2 so that Ω∂ψ = Ω
2
∂φ1 + Ω

2
∂φ2 so that Ωa = Ω

2
.
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is given in terms of X,Y,Z (defined as in (6.7)) as

S =
N2πr3+√

XY Z(1 − a2)
,

E =
N2r4+(3 + a2)

4XY Z(1 − a2)
,

L =
N2r4+a

2XY Z(1 − a2)
,

Ri =
N2r3+

2
√
XY Z(1 − a2)

√
1 −Xi

Xi
,

ζi = r+

√
Xi(1 −Xi)(1 − a2)

XY Z
.

(6.33)

From these expressions, together with the formula for temperature in (6.32) it follows that

the limit X + Y + Z → 1 (with none of X,Y,Z zero) is extremal (the temperature goes

to zero) and non-singular (all thermodynamic quantities are finite and well defined). Note

that r+ is an arbitrary parameter for these extremal black holes. When r+ is large the

fluid dynamical description is valid. The black holes so obtained are exactly dual to the

extremal fluid configurations described in section 6.2.

6.6 Black holes with two equal large R-charges and third R-charge small

Chong et al. [19] have determined a class of black hole solutions with two SO(6) charges

held equal, while the third charge is varied as a function of these two equal charges. In the

large radius limit, it turns out that this third charge is negligible compared to the first two,

so for our purposes these solutions can be thought of as black holes with two equal SO(6)

charges, with arbitrary rotations and the third SO(6) charge set to zero. The parameters

of this black hole solution are a, b,m, r+, s, which are related by the equation X(r+) = 0.

Black hole formulae simplify in the limit

r+ ≫ 1 and k =
2ms2

r2+
fixed,

in units where the inverse AdS radius g = 1, which leads to

2m = r4+(1 + k)2 .

Multiplying all thermodynamic integrals in [19] by
R3

AdS
G5

= 2N2

π , in this limit, the

thermodynamics can be summarised by

Ω1 = a , Ω2 = b , T =
r+
π
,

ζ1 = ζ2 = πT
√
k , ζ3 ∼ O

(
1

r2+

)
,

lnZgc =
π2N2V4T

3(1 + k)2

8(1 − a2)(1 − b2)
.

(6.34)
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Note that ζ3 and R3 are subleading in r+. These formulae are in perfect agreement

with (6.21) if we identify

κ = k .

From the expression for the temperature, it follows that all extremal or zero temperature

black holes have r+ = 0. Consequently all extremal black holes (of the class of black holes

described in this subsection) are singular, dual to the fact that the fluid mechanics has no

thermodynamically nonsingular zero temperature solutions.

Translating the estimate for the fluid dynamical mean free path into the black hole

variables we find (assuming r+ ≫ 0)

lmfp ∼ 1

3r+(1 + κ)
.

It follows that the fluid dynamical expansion parameter is essentially the same as 1/r+,

provided we stay away from the thermodynamically suspect parameter regime of large κ .

6.7 Black holes with two R-charges zero

The solution for the most general black hole with two R-charges set to zero relevant

solution has was presented in [20]. The parameters of this black hole are x0,m, δ, a, b

related by X(x0) = 0.

The thermodynamics of these black holes simplifies in the limit

x0 ≫ 1 , y =
√
x0δ fixed,

in units where g = 1, which leads to

2m =
x2

0

(1 − y2)
.

This gives an upper bound on y: y ≤ 1.

Multiplying all thermodynamic integrals in [20] by
R3

AdS
G5

= 2N2

π , in this limit, the

thermodynamic formulae can be summarised by

Ω1 = a , Ω2 = b ,

T =

√
x0(2 − y2)

2π
√

1 − y2
, ζ =

√
x0y =

2πTy
√

1 − y2

2 − y2
,

lnZgc =
x

3/2
0 πN2

2
√

1 − y2(2 − y2)(1 − a2)(1 − b2)
=

4π4N2T 3(1 − y2)

(1 − Ω2
1)(1 − Ω2

2)(2 − y2)4

(6.35)

Upon identifying κ = y2

1−y2 , we find perfect agreement with (6.24). Under this identification,

the expression for temperature becomes

T =

√
x0(2 + κ)

2π
√

1 + κ
.
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As in the subsection above, it follows immediately from this equation that the black hole

temperature vanishes only for the singular black holes with x0 = 0. This matches with the

fact that there are no nonsingular extremal fluid dynamical solutions in this case.

The fluid dynamical mean free path may be evaluated as a function of bulk parameters

as

lmfp ∼ 1

3
√
x0(1 + κ)

.

Note that lmfp is small whenever
√
x0 = r+ is large, an observation that explains

the agreement of black hole thermodynamics in the large r+ limit with the Navier-Stokes

equations. In more generality we see that lmfp is essentially the same as 1/r+, provided we

keep away from the thermodynamically suspicious parameter regime of κ large.

6.8 Extremality and the attractor mechanism

As discussed in the previous subsections, there exists a duality between extremal large

rotating AdS black holes on one hand and the extremal configurations of the fluid dynam-

ics on the other. This implies that the thermodynamic properties of these large rotating

extremal black holes are completely determined by the corresponding properties of large

static extremal black holes. As an application of this observation, let us recall the sugges-

tion [31 – 33] that the attractor mechanism for black holes implies the non-renormalisation

of the entropy of all extremal configurations, as a function of the ’t Hooft coupling λ. It

follows immediately from the fluid mechanical description at large charges, that were any

such non-renormalisation theorem be proved for static extremal configurations, it would

immediately imply a similar result for rotating extremal configurations.

6.9 BPS bound and supersymmetric black holes

All solutions of IIB supergravity on AdS5 ×S5, and all configurations of N = 4 Yang-Mills

on S3 obey the BPS bound

E ≥ L1 + L2 +
∑

i

Ri = L1 + L2 + 3R . (6.36)

Within the validity of the fluid dynamical approximation, described in this paper,

E − L1 − L2 = 2π2T 4A
3 + ω1 + ω2 − ω1ω2

(1 + ω1)(1 + ω2)
; (6.37)

notice that the r.h.s. of this equation is positive definite. The BPS bound is obeyed provided

τA
3 + ω1 + ω2 − ω1ω2

(1 + ω1)(1 + ω2)
≥ Ci . (6.38)

Plugging in the explicit expressions for A and Ci from (6.12), we find this condition is

satisfied provided

r+ =
2πT

2 − κ
≥

√
κ(1 + ω1)(1 + ω2)

(1 + κ)(3 + ω1 + ω2 − ω1ω2)
. (6.39)

The r.h.s. of (6.39) is of order unity. It follows that (6.39) is saturated only when r+ of

unit order. It follows that when r+ ≫ 1 (so that fluid dynamics is a valid approximation)
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the BPS bound is always obeyed as a strict inequality. Supersymmetric black holes are

never reliably described within fluid mechanics.22 The extremal black holes with large

horizon radius, that are well described by fluid mechanics23 (see the previous subsection)

are always far from supersymmetry.

We have noted above that a large class of extremal configurations in strongly inter-

acting Yang-Mills — all those that admit a fluid dynamic description – are not BPS. This

is in sharp contrast with the results of computations in free Yang-Mills theory, in which

all extremal configurations are supersymmetric [34]. This difference is related to the fact,

noted previously, the divergent mean free path prevents a fluid mechanical description from

applying to free theories. A practical manifestation of this fact is that the function h(ν),

which appears in the analysis of free Yang-Mills in equation (5.2) of [34], and plays the role

of r+ in our discussion here, is always of order unity for all allowed values of the chemical

potential, and so can never become large.

6.10 Fluid dynamics versus black hole physics at next to leading order

As we have explained above, the formulae for all thermodynamic charges and potentials of

black holes of temperature T and chemical potentials νi, in AdS5 × S5, may be expanded

as a Taylor series in 1/r+ ∼ lmfp(T, νi). As we have verified above, for every known family

of large AdS black holes, the leading order results in this expansion perfectly match the

predictions of the Navier-Stokes equations. Higher order terms in this expansion represent

corrections to Navier-Stokes equations. In this subsection we investigate the structure of

these corrections.

Let us first investigate the case of black holes with at least one SO(6) charge set equal

to zero (the black holes studied in section 6.6 and section 6.7). It is not difficult to verify

that the first deviations from the large radius thermodynamics of these black holes occur

at O(1/r2+) ∼ l2mfp. This result is in perfect accord with naive expectations from fluid

mechanics. As we have explained above, the fluid dynamical configurations presented in

this paper are exact solutions to the equations of fluid mechanics with all one derivative

terms, i.e. to the first order in lmfp. In general we would expect our solutions (and their

thermodynamics) to be modified at O(l2mfp), exactly as we find from the black hole formulae.

However when we turn our attention to black holes with all three SO(6) charges

nonzero we run into a bit of a surprise. It appears that the thermodynamics (and

stress tensor and charge currents) of these black holes receives corrections at order

O(1/r+) ∼ lmfp. This result is a surprise because, for the reason we have explained in the

previous paragraph, we would have expected the first corrections to our fluid mechanical

configuration to occur at O(l2mfp).

22Although it is possible to make the energy of supersymmetric black holes parametrically larger than

their entropy, this is achieved by scaling either ω1 or ω2 to unity with r+ kept at unit order. It is easy to

verify that in this limit the local, rest frame mean free path of the fluid is of unit order in regions of the S3

and so fluid mechanics may not be used to describe these configurations.
23Note that the ‘physical’ radius (Area)1/3 of the black hole is distinct from the parameter r+ which

determines the validity of fluid dynamics. The physical radius can be made arbitrarily large, nevertheless

fluid mechanics is only valid if r+ is large.
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We do not have a satisfactory resolution to this puzzle. In this subsection we will

simply present the expressions for the first order corrections to black hole thermodynamics

in a particular case (the case of black holes with all SO(6) charges equal), and leave the

explanation of these formulae to future work.

As we have mentioned above, the thermodynamics of a charged rotating black hole

in AdS5 × S5 with three equal charges and two different angular momenta can be found

in [18]. To calculate next to leading order (NLO) corrections to the thermodynamics of

large black holes, we systematically expand the thermodynamic quantities.

We find it convenient to shift to a new parametrisation in which there are no NLO

corrections to the intensive quantities. This allows us to cast the NLO corrections entirely

in terms of the intensive quantities. The parameters we choose are related to the parameters

in [18] in the following way

a = ωa −
√
κ(1 − ω2

a)ωb
ℓ

,

b = ωb −
√
κ(1 − ω2

b )ωa
ℓ

,

r+ = ℓ +
√
κωaωb ,

q =
√
κℓ3 + 3κℓ2ωaωb .

(6.40)

In terms of these parameters, the intensive quantities can be written as

Ωa = ωa + O
[

1

ℓ2

]
,

Ωb = ωb + O
[

1

ℓ2

]
,

T =

[
2 − κ

2π

]
ℓ+O

[
1

ℓ

]
,

ν =
2π

√
κ

2 − κ
+ O

[
1

ℓ2

]
,

(6.41)

where we have calculated up to NLO and confirmed that the intensive quantities do not

get corrected in this order.

This in turn means that the new parameters can be directly interpreted in terms of

the intensive quantities.

ωa = Ωa + O
[
l2mfp

]
, ωb = Ωb + O

[
l2mfp

]
,

where lmfp ∼ 2−κ
T .

ℓ = T

[√
π2 + 2ν2 + π

2

]
+ O

[
1

T 2

]
,

√
κ =

√
π2 + 2ν2 − π

ν
+ O

[
1

T 2

]
.
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Now, we calculate NLO corrections to the extensive quantities in terms of the new

parameters.

2m = (1 + κ)ℓ4 + 4
√
κ(1 + κ)ωaωbℓ

3 + O[ℓ2] ,

S =
T 3

G5(1 − ω2
a)(1 − ω2

b )

[
4π5

(2 − κ)3
+ O

[
1

T 2

]]
,

La =
T 4

G5(1 − ω2
a)(1 − ω2

b )

[
2ωa

1 − ω2
a

[
2π5(1 + κ)

(2 − κ)4

]
− πν3ωb

4T

[
1 + ω2

a

1 − ω2
a

]
+ O

[
1

T 2

]]
,

Lb =
T 4

G5(1 − ω2
a)(1 − ω2

b )

[
2ωb

1 − ω2
b

[
2π5(1 + κ)

(2 − κ)4

]
− πν3ωa

4T

[
1 + ω2

b

1 − ω2
b

]
+ O

[
1

T 2

]]
,

R =
T 3

G5(1 − ω2
a)(1 − ω2

b )

[
2π4√κ
(2 − κ)3

− πν2

4T
ωaωb + O

[
1

T 2

]]
,

E =
T 4

G5(1 − ω2
a)(1 − ω2

b )

[
2π5(1 + κ)

(2 − κ)4

[
2

1 − ω2
a

+
2

1 − ω2
b

− 1

]

−πν
3ωaωb
4T

[
2

1 − ω2
a

+
2

1 − ω2
b

]
+ O

[
1

T 2

]]
,

(6.42)

where G5 = πR3
AdS/(2N

2) is the Newton’s constant in AdS5.

In particular, the subleading terms can be isolated and written as

∆S = 0 ,

∆E = − πζ3ωaωb
4G5(1 − ω2

a)(1 − ω2
b )

[
2

1 − ω2
a

+
2

1 − ω2
b

]
,

∆La = − πζ3ωb(1 + ω2
a)

4G5(1 − ω2
a)

2(1 − ω2
b )
,

∆Lb = − πζ3ωa(1 + ω2
b )

4G5(1 − ω2
a)(1 − ω2

b )
2
,

∆R = − πζ2ωaωb
4G5(1 − ω2

a)(1 − ω2
b )
,

∆ lnZgc =
πζ3ωaωb

4G5T (1 − ω2
a)(1 − ω2

b )
.

(6.43)

7. Comparison with black holes in AdS4 × S
7 and AdS7 × S

4

In this section we compare solutions of rotating fluids of the M5 or M2 brane conformal

field theory on S2 or S5 to the classical physics of black holes in M theory on AdS4 × S7

and AdS7 × S5 respectively. Our results turn out to be qualitatively similar to those of

the previous section with one difference: the puzzle regarding the next to leading order

agreement between fluid dynamics and black hole physics seems to be absent in this case.

7.1 Predictions from fluid mechanics

The equations of state of the strongly coupled M2 and M5 brane fluids were computed

from spinning brane solutions in [35]. Our parameters are related to theirs by κi = l2i /r
2
H .
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7.1.1 M2 branes

We define our R-charges to be half of the angular momenta of [35] to agree with gauged

supergravity conventions. The equation of state is

h(ν) =
4π2(2N)3/2

∏
j(1 + κj)

5/2

3(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

3
,

νi =
4π
∏
j(1 + κj)

(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

( √
κi

1 + κi

)
,

hi(ν) =
π(2N)3/2

∏
j(1 + κj)

3/2

3(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

2

√
κi ,

(7.1)

where i, j, k = 1 . . . 4.

The stress tensor and currents are given by (4.6) and (4.7) with

A =
4π2(2N)3/2

∏
j(1 + κj)

5/2

3(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

3
,

B =
4π2(2N)3/2

∏
j(1 + κj)

3/2

3(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

2
,

Ci =
π(2N)3/2

∏
j(1 + κj)

3/2

3(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

2

√
κi .

(7.2)

The thermodynamics can be summarised by

ζi =
4πT

∏
j(1 + κj)

(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

( √
κi

1 + κi

)
,

lnZgc =
16π3(2N)3/2T 2

∏
j(1 + κj)

5/2

3(1 − Ω2)(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

3
.

(7.3)

The mean free path in fluid dynamics is given by

lmfp ∼
[
S

4πE

]

Ω=0

=
B

(d− 1)4πTA
=

(
3 + 2

∑
j κj +

∑
j<k κjκk −

∏
j κj

)

8πT
∏
j(1 + κj)

=
1

8πT



∑

j

1

1 + κj
− 1


 .

(7.4)

This simplifies when the charges are pairwise equal, κ3 = κ1 and κ4 = κ2. In this case,

with i = 1, 2:

ζi =
4πT

∏
j(1 + κj)

(3 +
∑

j κj −
∏
j κj)

( √
κi

1 + κi

)
,

lnZgc =
16π3(2N)3/2T 2

∏
j(1 + κj)

2

3(1 − Ω2)(3 +
∑

j κj −
∏
j κj)

3
.

(7.5)
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and the mean free path becomes

lmfp ∼

(
3 +

∑
j κj −

∏
j κj

)

8πT
∏
j(1 + κj)

=
1

8πT

[
∑

i

2

1 + κi
− 1

]
. (7.6)

It is evident that the thermodynamic equations of state listed above allow a set of

extremal fluid configurations very similar to those discussed in section 6.2. The analysis of

section 6.2 can be easily extended to fluids on S2.

7.1.2 M5 branes

We define our R-charges to be twice the angular momenta of [35] to agree with gauged

supergravity conventions. The equation of state is

h(ν) =
64π3N3

∏
j(1 + κj)

4

3(3 +
∑

j κj −
∏
j κj)

6
,

νi =
2π
∏
j(1 + κj)

(3 +
∑

j κj −
∏
j κj)

( √
κi

1 + κi

)
,

hi(ν) =
128π2N3

∏
j(1 + κj)

3

3(3 +
∑

j κj −
∏
j κj)

5

√
κi ,

(7.7)

where i = 1, 2.

The stress tensor and currents are given by (4.6) and (4.7) with

A =
64π3N3

∏
j(1 + κj)

4

3(3 +
∑

j κj −
∏
j κj)

6
,

B =
128π3N3

∏
j(1 + κj)

3

3(3 +
∑

j κj −
∏
j κj)

5

Ci =
128π2N3

∏
j(1 + κj)

3

3(3 +
∑

j κj −
∏
j κj)

5

√
κi .

(7.8)

The thermodynamics can be summarised by

ζi =
4πT

∏
j(1 + κj)

(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

( √
κi

1 + κi

)
,

lnZgc =
64π6N3T 5

∏
j(1 + κj)

4

3
∏
a(1 − Ω2

a)(3 +
∑

j κj −
∏
j κj)

3
.

(7.9)

The mean free path in fluid dynamics is given by

lmfp ∼
[
S

4πE

]

Ω=0

=
B

(d− 1)4πTA
=

(
3 +

∑
j κj −

∏
j κj

)

10πT
∏
j(1 + κj)

=
1

10πT



∑

j

2

1 + κj
− 1


 .

(7.10)
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In the case that the three rotation parameters are equal, Ω1 = Ω2 = Ω3 = Ω, we have

γ = (1 − Ω2)−1/2 and

ζi =
4πT

∏
j(1 + κj)

(3 + 2
∑

j κj +
∑

j<k κjκk −
∏
j κj)

( √
κi

1 + κi

)
,

lnZgc =
64π6N3T 5

∏
j(1 + κj)

4

3(1 − Ω2)3(3 +
∑

j κj −
∏
j κj)

3
.

(7.11)

It is evident that the thermodynamic equations of state listed above allow a set of extremal

fluid configurations very similar to those discussed in section 6.2. The analysis of section 6.2

can be easily extended to fluids on S5.

7.2 Black holes in AdS4 with pairwise equal charges

The relevant solution was found in [22]. Its thermodynamics have been computed in [23].

We consider the limit of large r+ with
2ms2i
r+

= ki fixed. In this limit m can be written as

m =
r3+
2

(1 + k1)
2(1 + k2)

2,

and therefore si ∼ 1
r+

.

After multiplying integrals by
R2

AdS
G4

= (2N)3/2

3 , the thermodynamic quantities can be

expressed as

T =
r+(3 +

∑
j kj −

∏
j kj)

4π
, Ω = a ,

ζ1 = ζ3 = 4πT
(1 + k2)

√
k1

(3 +
∑

j kj −
∏
j kj)

, ζ2 = ζ4 = 4πT
(1 + k1)

√
k2

(3 +
∑

j kj −
∏
j kj)

,

lnZgc =
16π3(2N)3/2T 2

3

( ∏
j(1 + kj)

2

(3 +
∑

j kj −
∏
j kj)

3

)
1

1 − a2
.

(7.12)

If one identifies κi = ki, then these formulae match with (7.5). It is not difficult to verify

that the first corrections to the thermodynamical equations above occur at O(1/r2+).

It is clear from (7.12) that the black holes of this subsection admit a zero tempera-

ture (extremal) limit with nonsingular thermodynamics at any every value of r+. These

extremal black holes are dual to extremal solutions of fluid dynamics analogous to those

described in the previous section in the context of N = 4 Yang-Mills.

The fluid dynamical mean free path may easily be computed as a function of black

hole parameters. From (7.6) we find

lmfp ∼ 1

2r+
∏
j(1 + κj)

.

As in the previous section, the lmfp ∼ 1/r+ away from thermodynamically suspect limits

of parameters.
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7.3 Black holes in AdS7 with equal rotation parameters

The relevant solution was found in [21]. Its thermodynamics have been computed in [23].24

We set the parameter g in [23] to be unity and consider the limit

ρ+ ≫ 1 , and Hi = 1 +
2ms2i
ρ6
+

fixed,

where i=1,2. In this limit, the parameter m is given by

2m = ρ6
+H1H2 .

In this limit, after multiplying integrals by
R5

AdS
G7

= 16N3

3π2 , the thermodynamics can be

summarised by

Ω = a , T =
ρ+

2π

(
2
∑

j Hj −
∏
j Hj∏

j

√
Hj

)
,

ζ1 = 2πT
H2

√
H1 − 1

2
∑

j Hj −
∏
j Hj

, ζ2 = 2πT
H1

√
H2 − 1

2
∑

j Hj −
∏
j Hj

,

lnZgc =
64π6N3T 5

3(1 − Ω2)3

( ∏
j H

4
j

(2
∑

j Hj −
∏
j Hj)6

)
.

(7.13)

These formulae agree with (7.11) upon identifying κi = Hi − 1. The first corrections to

these thermodynamical formulae occur at O(1/r2+). Using this identification we can rewrite

the expression for the temperature as

T =
ρ+
∏
j

√
1 + κj

2π



∑

j

2

1 + κj
− 1


 .

It follows that the black holes studied in this subsection admit smooth extremal limits at

any value of ρ+. Extremal black holes with large ρ+ (and with no κi arbitrarily large) are

dual to extremal solutions of fluid mechanics.

Expressing the fluid mechanical mean free path (7.10) as a function of black hole

parameters we find

lmfp ∼ 1

5ρ+
∏
j

√
1 + κj

.

Once again lmfp ∼ 1/r+, away from thermodynamically suspect limits.

24We believe that [23] has the following typos: equation (4.7) should read

S =
π3(r2 + a2)

√
f1

4Ξ3
T =

Y ′

4πr(r2 + a2)
√
f1

Φi =
2msi
ρ4ΞHi

[Ξ−αi + βi(Ω − g)] .
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8. Discussion

As we have explained in this paper, the classical properties of large black holes in AdS

spaces enjoy a large degree of universality, summarised by (1.2). However the reasoning

that led to (1.2) applies equally to all classical theories of gravity, not just to those theories

that are governed by the two derivative effective action. For instance, N = 4 Yang-Mills

theory at finite λ is dual to IIB theory on AdS5 × S5 of finite radius in string units. Even

though thermodynamics of black holes in this background will receive contributions from

each of the infinite sequence of α′ corrections to the Einstein action, we expect (1.2) to be

exact in the large horizon radius limit.25

We find it particularly interesting that (at least in several particular contexts) our

fluid dynamical picture applies not just to non-extremal black holes but also to large

radius extremal black holes. This fact might allow us to make connections between our

approach and the interesting recent investigations of the properties of extremal black

holes. In particular, Astefanesei, Goldstein, Jena, Sen and Trivedi [33] have recently

argued that the attractor mechanism applies to rotating extremal black holes, and have

derived a differential equation that determines the attractor geometry (and gauge field

distribution, etc.) of the near horizon region of such black holes. It would be very

interesting to investigate the connection, if any, between these rotating attractor equations

and our equations of rotating fluid dynamics.

It would be conceptually simple (though perhaps technically intricate) to compute the

spectrum of small fluctuations about the fluid dynamical solutions presented in this paper.

This spectrum should match the spectrum of the (lowest) quasinormal modes about the

relevant black holes (the decay of fluid fluctuations due to viscosity maps to the decay of

quasi normal modes as they fall into the black hole horizon). It would be interesting to

check if this is indeed the case.

It would be interesting to better understand, purely in bulk terms, why our proposal

works. Roughly speaking, it should be possible to understand the metric of a black hole

in global AdS and in the large radius limit, as a superposition of patches of the metric of

black branes of various different temperatures and moving at various different velocities,

where the temperatures and velocities are given by the solutions to the fluid dynamical

equations presented in this paper. It would be interesting and useful if these words could

be converted into the first term of a systematic approximation procedure to generate black

hole solutions in AdS spaces in a power series in 1/r+. Such a construction would constitute

a bulk derivation of the boundary Navier-Stokes equations (and corrections thereof).

Relatedly, it would be interesting to ask if there are any gravitational interpretations

of the local properties of fluids in our solutions. For instance, fluid mechanics yields a sharp

prediction for the velocity and entropy density of the fluid as a function of position on the

sphere. We have not yet been able to verify these predictions, because we do not know what

25Away from the supergravity limit, the mean free path lmfp = ν/ρ is expected to be given by f(λ)s/ρ

where f(λ) is a monotonically decreasing function that interpolates between infinity at λ = 0 to unity at

infinite λ. Thus the condition for the validity of fluid mechanics is modified at finite λ; in the uncharged

case, for instance, it is T ≫ f(λ).
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gravitational construction we should compare them to. The entropy of the fluid is an inte-

gral over the boundary. The entropy of the black hole is an integral over the horizon. Per-

haps there exists a natural map from the horizon to the boundary that allows one to convert

horizon densities to boundary densities and vice versa. Such a map (for which we have no

conjecture) would permit a gravitational prediction s, the local entropy density of the fluid.

The fluid velocity is another quantity for which it would be useful to have a gravita-

tional definition. We do not really have a serious proposal for such a definition: nonetheless,

in the next few paragraphs we outline a caricature proposal, in order to give the reader

a sense of the types of relations that might exist (we emphasise that we do not have any

physical reason to believe that this caricature has any truth to it).

In the black hole solutions, there is one special Killing vector, K = ∂t + Ωa∂φa , that is

also the null generator of the horizon. It has the norm

‖K‖2 ≡ −KµKµ =

{
r2γ−2 at the boundary,

0 at the horizon.

If we were to normalise it with respect to the metric of the conformal boundary, the result

would be K̃ = γK. This could be identified with the fluid velocity uµ. However, as γ is

not constant, K̃ is not a Killing vector. It also seems unnatural to use a normalisation

factor that depends on θ but not r. Nonetheless, this much maligned vector field has an

interesting property.

Recall that black hole temperature and chemical potentials can be computed from the

formulae

T =
κ

2π
=

√
(∂µ ‖K‖)(∂µ ‖K‖)

2π

∣∣∣∣∣
horizon

, ζi = AiµK
µ
∣∣
horizon

.

If one were to replace K with K̃ in the formulae above, one would obtain T and µi, the

local temperature and chemical potentials of the fluid.

We end this paper by reminding the reader that, while our proposal has passed many

checks, our work has left one significant puzzle unresolved. While the thermodynamics

and stress tensors of uncharged rotating black holes in every dimension, plus all known

black holes in AdS7 ×S4 and AdS4 ×S7, deviate from the predictions of the Navier-Stokes

equations only at second order in lmfp, the situation is more complex for black holes in

AdS5 ×S5. In this case, black holes with at least one SO(6) charge equal to zero also agree

with the results of the Navier-Stokes equations up to O(l2mfp). However the thermodynamics

of rotating black holes with all SO(6) charges nonzero, appears to deviate from our fluid

mechanical predictions at O(lmfp) (see section 6.10).

We consider this a significant puzzle as our fluid dynamical configurations solve the

Navier-Stokes equations including O(lmfp) dissipative contributions. Moreover, in ap-

pendix A we have checked by direct enumeration that all possible vectors and traceless

symmetric tensors that transform homogeneously under conformal transformation and con-

tain a single derivative simply vanish on our solution, so it is difficult to see how any one
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derivative modification to the equations of fluid dynamics could help resolve this puzzle.26

Once this puzzle is resolved it would be interesting to attempt to reproduce the O(l2mfp)

corrections to black hole thermodynamics from appropriate additions to the equations of

fluid dynamics. It is perhaps worth emphasising that black holes in AdS represent exact

(to all orders in lmfp) solutions to a dynamical flow. A detailed study of these solutions

might lead to new insights into the nature of the fluid dynamical approximations of the

high energy regime of quantum field theories.
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A. Conformal fluid mechanics

Consider a conformal fluid in d dimensions. We seek the conformal transformations of

various observables of such a fluid. To this end, consider a conformal transformation which

replaces the old metric gµν with g̃µν given by

gµν = e2φg̃µν ; gµν = e−2φg̃µν .

The Christoffel symbols transform as

Γνλµ = Γ̃νλµ + δνλ∂µφ+ δνµ∂λφ− g̃λµg̃
νσ∂σφ .

Let uµ be the four-velocity describing the fluid motion. Using gµνu
µuν = g̃µν ũ

µũν =

−1, we get uµ = e−φũµ. It follows that the projection tensor transforms as Pµν = gµν +

uµuν = e−2φP̃µν . The transformation of the covariant derivative of uµ is given by

∇µu
ν = ∂µu

ν + Γνµλu
λ = e−φ

[
∇̃µũ

ν + δνµũ
σ∂σφ− g̃µλũ

λg̃νσ∂σφ
]
. (A.1)

26It has been suggested that certain pathologies in relativistic fluid dynamics lead to the breakdown of

the derivative expansion [36] (See also [28] and the references therein). As any such pathology should apply

equally to two charge and three charge black holes, we find it difficult to see how this issue could have

bearing on our puzzle. We thank S. Gupta and H. Liu for discussions on this issue. Another possibility

is that the formulae of black hole thermodynamics receive corrections — perhaps from Wess-Zumino type

terms — that are nonzero only in an even dimensional bulk (and so in ten but not in eleven dimensions)

and only when all charges are nonzero. We thank O. Aharony for suggesting this possibility.

– 45 –



J
H
E
P
0
9
(
2
0
0
8
)
0
5
4

The above equation can be used to derive the transformation of various related

quantities

ϑ = ∇µu
µ = e−φ

[
ϑ̃+ (d− 1)ũσ∂σφ

]
,

aν = uµ∇µu
ν = e−2φ

[
ãν + P̃ νσ∂σφ

]
,

σµν =
1

2

(
Pµλ∇λu

ν + P νλ∇λu
µ
)
− 1

d− 1
ϑPµν = e−3φσ̃µν ,

ωµν =
1

2

(
Pµλ∇λu

ν − P νλ∇λu
µ
)

= e−3φω̃µν .

(A.2)

Further, the transformation of the temperature and the chemical potential can be written

as T = e−φT̃ and µ = e−φµ̃. The transformation of spatial gradient of temperature

(appearing in the Fourier law of heat conduction) is

Pµν(∂νT + aνT ) = e−3φP̃µν(∂ν T̃ + ãν T̃ ) .

The viscosity, conductivity etc. scale as κ = e−(d−2)φκ̃ , η = e−(d−1)φη̃, µi = e−φµ̃i and

Dij = e−(d−2)φD̃ij .

For a fluid with c charges, there are 2c+ 2 vector quantities involving no more than a

single derivative which transform homogeneously27. They are

uµ, ∂µνi, ∂µT +

(
aµ −

ϑ

d− 1
uµ

)
T , uµuσ∂σνi and

(
uσ∂σT +

ϑ

d− 1
T
)
uµ.

In the kind of solutions we consider in this paper, all of them vanish except uµ.

The transformation of the stress tensor is T µν = e−(d+2)φT̃ µν , from which it follows that

∇µT
µν = e−(d+2)φ(∇̃µT̃

µν − g̃λσT̃
λσ g̃νσ∂σφ) .

So, for the stress tensor to be conserved in both the metrics, it is necessary that T µν is

traceless.

To consider the possible terms that can appear in the stress tensor, we should look at

the traceless symmetric second rank tensors which transform homogeneously. The tensors

formed out of single derivatives which satisfy the above criterion are easily enumerated.

For a fluid with c charges, there are 2c+ 4 such tensors and they are

uµuν +
1

d
gµν , σµν , qµuν + qνuµ,

(
uσ∂σT +

ϑ

d− 1
T
)(

uµuν +
1

d
gµν
)
,

1

2

(
uµ∂λνi + uλ∂µνi

)
− gµν

d
uσ∂σνi and uσ∂σνi

(
uµuν +

1

d
gµν
)
.

(A.3)

Among these possibilities, the stress tensor we employ just contains the tensors in the first

line. It can be shown that the other tensors which appear in the above list can be removed

by a redefinition of the temperature etc. Even if they were to appear in the stress tensor,

for the purposes of this paper, it suffices to notice that all such tensors except uµuν + 1
dg
µν

vanish on our solutions. Hence, they would not contribute to any of the thermodynamic

integrals evaluated on our solutions.

27In the following analysis, we will neglect pseudo-tensors which can be formed out of ǫµν.... Additional

tensors appear if such pseudo-tensors are included in the analysis.
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B. Free thermodynamics on spheres

In (4.11) above, we have presented a general expression for the grand canonical partition

function for any conformal fluid on a sphere. In this appendix , we compare this expression

with the conformal thermodynamics of a free complex scalar field on a sphere.

Strictly speaking, the fluid dynamical description never applies to free theories on a

compact manifold, as the constituents of a free gas have a divergent mean free path (they

never collide). Nonetheless, as we demonstrate in this subsection, free thermodynamics

already displays some of the features of (4.11) - in its dependence on angular velocities, for

example - together with certain pathologies unique to free theories.

Consider a free complex scalar field on Sd−1× time. This system has a U(1) symmetry,

under which φ has unit charge and φ∗ has charge minus one. We define the ‘letter partition

function’ [37] Zlet as Tr exp [−βH + νR+ βΩaLa] evaluated over all spherical harmonic

modes of the scalar field

Zlet = (eν + e−ν)e−β
d−2
2

(
1 − e−2β

∏n
a=1(1 − e−β−βΩa)(1 − e−β+βΩa)

)
(B.1)

(this formula, and some of the others in this section, are valid only for even d; the gen-

eralisation to odd d is simple). We will now examine the high temperature limit of the

grand-canonical partition function separately for ν = 0 and ν 6= 0.

B.1 Zero chemical potential: (ν = 0) case

The second quantised partition function, Zgc for the scalar field on the sphere is given by

Zgc = exp

(
∑

N

Zlet(Nβ,Nν,Ωa)

N

)
. (B.2)

For small β, we have

Zlet ≈
4

βd−1
∏
a(1 − Ω2

a)
.

It follows that28

lnZgc =
4ζ(d)

βd−1
∏
a(1 − Ω2

a)
. (B.3)

Upon identifying Vdh|ν=0 = 4ζ(d), we find that (B.2) is in perfect agreement with (4.11).

B.2 Nonzero chemical potential: (ν 6= 0) case

The high temperature limit of the thermodynamics of a free, charged, massless field is

complicated by the occurrence of Bose condensation. This phenomenon occurs already

when ωa = 0; this is the case we first focus on.

It is useful to rewrite the letter partition function as

Zlet = (2 cosh ν) e−β
d−2
2

∑

N

m(N)e−βN , (B.4)

28This formula has been derived before in many contexts, for example [38] have derived this in d = 4 and

compared it with the thermodynamics of black holes in AdS5.
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where m(N) ≈ 2Nd−2/(d− 2)! for N ≫ 1. The logarithm of the grand canonical partition

function may then be written as a sum over Bose factors (one per ‘letter’)

lnZgc = −
∑

N

m(N)
[
ln(1 − e−β(N+(d−2)/2)+ν ) + ln(1 − e−β(N+(d−2)/2)−ν )

]
. (B.5)

The total charge in this ensemble is given by

R =
∂

∂ν
lnZgc =

∑

N

m(N)

(
1

eβ(N+(d−2)/2)−ν − 1
− 1

eβ(N+(d−2)/2)+ν − 1

)
. (B.6)

In order to compare with fluid dynamics, we should take β to zero while simultaneously

scaling to large R as R = q
βd−1 with q held fixed. As we will see below, in order to make the

total charge R large, we will have to choose the chemical potential to be large. However

it is clear from (B.5) that |ν| < β(d − 2)/2. Consequently, the best we can do is to set

ν = β((d− 2)/2)− ǫ where ǫ will be taken to be small. We are interested in the limit when

β is also small. We may approximate (B.6) by

q

βd−1
=

1

ǫ
− 1

eβ(d−2)−ǫ − 1
+

∞∑

N=1

(
1

eβN+ǫ − 1
− 1

eβ(N+(d−2))−ǫ − 1

)
. (B.7)

The only solution to (B.7) is

ǫ =
βd−1

q
(1 + O(β)) .

Substituting this solution into the partition function, we find

lnZq =
4ζ(d)

βd−1
(1 + O(β)) . (B.8)

Consequently, to leading order the partition function is independent of the charge q ! What

is going on here is that almost all of the charge of the system resides in a Bose condensate

of the zero mode of the field φ. This zero mode contributes very little entropy or energy to

the system at leading order in β.29 At high temperatures, the zero mode is simply a sink

that absorbs the system charge, leaving the other thermodynamic parameters unaffected.

Upon generalising our analysis to include angular velocities, we once again find that the

leading order partition function (in the limit of high temperatures and a charge R = q/βd−1)

is independent of q and in fact is given by (B.3). Consequently, there is a slightly trivial (or

pathological) sense in which the thermodynamics of a free charged scalar field agrees with

the predictions of fluid mechanics - we find agreement upon setting h(ν) to a constant.

C. Stress tensors from black holes

According to the usual AdS/CFT dictionary, the boundary stress tensor on Sd−1, corre-

sponding to any finite energy solution about an AdSD background of gravity may be read

29In particular, the contribution of the zero mode to the energy is proportional to the charge, which is

suppressed by a factor of β relative to the contribution to the energy from nonzero modes.
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off from the metric near the boundary, using the following procedure [3 – 10]. First we

foliate the spacetime near the boundary into a one parameter set of d geometries, each of

which is metrically conformal to Sd−1 × R, to leading order in deviations from the bound-

ary. We will find it convenient to use coordinates such that the leading order metric in the

neighbourhood of the boundary takes the form

ds2 = −r2dt2 + r2dΩ2
d−1 +

dr2

r2
(C.1)

(here r = ∞ is the boundary; this metric has corrections at subleading orders in 1
r2 ).

In these coordinates, our foliation surfaces are simply given by r = const. We next

compute the extrinsic curvature Θν
µ = −∇µn

ν on these surfaces, where nν is the unit

outward normal to these surfaces. The boundary stress tensor for the dual field theory on

a unit sphere is given by [3 – 10] as30

Πµ
ν = lim

r→∞
rD−1

8πGD
(Θµ

ν − δµνΘ) , (C.2)

where the coordinates µ, ν go over time and the angles on SD−1.

The stress tensor as defined above will contain some terms which are independent

of mass and charge of the black hole. These are the terms that are nonzero even on the

vacuum AdS background and they diverge in the limit r → ∞. These terms are all precisely

cancelled, up to a zero point Casimir energy, by counter terms presented in section 2 of [3].

We will simply ignore all such terms below; consequently, the stress tensors we present

in this paper should be thought of as the field theory stress tensors with the contribution

from the Casimir energy subtracted out.31

In order to compute the stress tensor in (C.2), we must retain subleading corrections

to the metric in (C.1). However, only those corrections that are subleading at O( 1
rD−1 )

(relative to the leading order metric in (C.1)) contribute to (C.2).

In order to compute the stress tensor corresponding to two classes of black hole so-

lutions below, we adopt the following procedure. First, we find a coordinate change that

casts the metric at infinity in the form (C.1) at leading order. Next we compute all the

subleading corrections to the metric at order O( 1
rD−1 ). Finally, we use these corrections to

compute the extrinsic curvature Θµ
ν and then Πµ

ν using (C.2).

C.1 Stress tensor from rotating uncharged black holes in AdSD

C.1.1 D = 2n+ 1

The most general rotating black hole in an odd dimensional AdS space is given by equation

(E.3) of [15] (we specialise to odd dimensions by setting the parameter ǫ in that equation

to zero). The metric presented in [15] uses as coordinates

30We rescale the stress tensor of [3] by a factor of 1
8πGD

in order that the energy of our solutions is given

by
R √

γ Π0
0 with no extra normalisation factor.

31Recall that the full stress tensor of a general d dimensional conformal field theory is not traceless on

an arbitrary manifold; however the trace is given by a function of the manifold curvature independent of

the field theory configuration. It follows that our stress tensor with Casimir contribution subtracted must

be traceless, as indeed it will turn out to be.
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1. The n Killing azimuthal angles φi along which the black hole rotates. These may be

identified with the coordinates φi in section 4 of our paper.

2. n other unspecified variables (called ‘direction cosines’) µi subject to the constraint∑
i µ

2
i = 1. These may be thought of as the remaining n− 1 coordinates on S2n−1.

3. The radial variable r and timelike variable t.

In order to cast the metric of [15] into the form (C.1) near the boundary, we perform

the following change of coordinates

r̃2 =

n∑

i=1

(r2 + a2
i )µ

2
i

1 − a2
i

, r̃2µ̃2
i (1 − a2

i ) = (r2 + a2
i )µ

2
i . (C.3)

Note that
n∑

i=1

µ2
i =

n∑

i=1

µ̃2
i = 1 .

This equation may be solved by writing µ̃i as functions of the n − 1 variables θj (which

may then be identified with the coordinates used in section 4)

µ̃i =



i−1∏

j=1

cos2 θj


 sin2 θi .

In these coordinates, the metric in the neighbourhood of r → ∞ becomes

ds2 = −(1 + r̃2)dt2 +
dr̃2

1 + r̃2
+ r̃2

n∑

i=1

(dµ̃2
i + µ̃2

i dφ
2
i )

+
2m

r̃2n−2
γ2(n+1)dt2 +

2m

r̃2n+2
γ2ndr̃2

−
n∑

i=1

4maiµ̃
2
i

r̃2n−2
γ2(n+1)dtdφi +

n∑

i=1,j=1

2maiaj µ̃
2
i µ̃

2
j

r̃2n−2
γ2(n+1)dφidφj ,

(C.4)

where we have retained all terms that are subleading up to O( 1
r̃D−1 ) compared to the metric

of pure AdS. Here γ−2 = 1 −∑n
i=1 a

2
i µ̃

2
i and

∑n
i=1 µ̃

2
idµ̃

2
i =

∑n−1
i=1

(∏i−1
j=1 cos2 θj

)
dθ2

i as

in (4.2).

Note that this metric separates into two parts; the first piece (on the first line of (C.4))

is the metric of pure AdS space while the terms of the remaining lines represent correction

proportional to the mass m.

The normal vector is given by nr̃ = 1√
gr̃r̃

(with all other components zero). As our met-

ric contains no terms that mix r with other coordinates at leading order, this is the same as

nr̃ =
1√
gr̃r̃

= r̃

(
1 +

1

r̃2

) 1
2 [

1 − m

r̃2n
γ2n
]
.

Since the normal vector has only the r̃ component and since the component is a function of

r̃ only, to compute the extrinsic curvature tensor Θν
λ one needs only those components of Γ
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that are of the form Γνλr̃. The Christoffel symbols (that are relevant for the calculation of the

stress-tensor) as calculated from this metric up to the first subleading term in r̃ are given by

Γttr̃ =
r̃

r̃2 + 1

(
1 +

2nm

r̃2n
γ2(n+1)

)
Γφitr̃ =

2nmai
r̃2n+1

γ2(n+1)

Γtφir̃ = − 2nmaiµ̃
2
i

r̃2n+1
γ2(n+1) Γφiφj r̃ =

1

r̃

(
δij −

2nmaiajµ̃j
r̃2n

γ2(n+1)

)

Γθθr̃ =
1

r̃
.

(C.5)

The extrinsic curvature Θν
λ in this case is given by

Θν
λ = −Γνλr̃n

r̃ + O
(

1

r̃2n+1

)
.

Ignoring all terms in Θν
µ that are independent of mass (for the reasons explained in the

introduction to this appendix) we find

Θt
t = −mγ

D+1

r̃D−1
(D − 1 − γ−2) Θφi

φi
=
mγD+1

r̃D−1

(
(D − 1)a2

i µ̃
2
i + γ−2

)

Θt
φi =

(D − 1)mγD+1

r̃D−1
aiµ̃

2
i Θφi

φj
=

(D − 1)mγD+1

r̃D−1
aiajµ̃

2
j (i 6= j)

Θφi
t = −(D − 1)mγD+1

r̃D−1
ai Θθi

θi
=
mγ(D−1)

r̃D−1
.

(C.6)

Here the n has been replaced by D−1
2 . It may easily be verified that Θν

λ is traceless and

therefore the stress tensor is also traceless according to the definition (C.2). Raising one

index in Θ by asymptotic AdS metric, normalising it appropriately and then taking the

large r̃ limit one can derive the stress tensor as given in (5.10).

C.1.2 D = 2n+ 2

The computation of the boundary stress tensor for the most general uncharged rotating

black hole in even dimensional AdS spaces is almost identical to the he analysis presented

in the previous subsection. Once again the metric is given in equation (E-3) of [15], where

we must set ǫ to 1 to specialise to even dimensions. The coordinates of the black hole

solution are similar to those described in the previous subsection, except that there are

n + 1 coordinates µi restricted by a single equation
∑

a µ
2
i = 1. Repeating the computa-

tions described in the previous subsection, our final result is once again simply (C.6). In

summary (C.6) is correct no matter whether D is odd or even.

C.2 Black holes in AdS5 with all R-charges equal

In this subappendix, we compute the boundary stress tensor for a class of charged black

holes, namely for black holes in AdS5 with all three R-charges equal. Our computation

will verify the striking prediction of section 3 that the functional form of this stress tensor

is independent of the black hole charge in the fluid dynamical limit.
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The metric for rotating black holes with all R-charges equal is given by (equation (1)

of [18])

ds2 = −∆θ̃[(1 + y2)ρ2dt+ 2qν]dt

ΣaΣbρ2
+

2qνω

ρ2
+
f

ρ4

(
∆Θdt

ΣaΣb
− ω

)2

+
ρ2dy2

∆y

+
ρ2dθ̃2

∆θ̃

+
y2 + a2

Σa
sin2 θ̃dφ2 +

y2 + b2

Σb
cos2 θ̃dψ2,

(C.7)

where

∆y =
(y2 + a2)(y2 + b2)(1 + y2) + q2 + 2abq

y2
− 2m,

ρ2 =y2 + a2 cos2 θ̃ + b2 sin2 θ̃ ,

∆θ̃ =1 − a2 cos2 θ̃ − b2 sin2 θ̃ ,

Σa =1 − a2,

Σb =1 − b2,

f =2mρ2 − q2 + 2abqρ2,

ν =b sin2 θ̃dφ+ a cos2 θ̃dψ ,

ω =a sin2 θ̃
dφ

Σa
+ b cos2 θ̃

dψ

Σb
.

(C.8)

This metric takes the form (C.1) near the boundary, once we perform the change of

coordinates32

r2 =
y2(1 − a2 cos2 θ̃ − b2 sin2 θ̃) + a2 sin2 θ̃ + b2 cos2 θ̃ − a2b2

ΣaΣb
,

r2 sin2 θ =
(y2 + a2) sin2 θ̃

Σa
,

r2 cos2 θ =
(y2 + b2) cos2 θ̃

Σb
.

(C.9)

Retaining corrections only to order O(1/r4) relative to the leading order metric (C.1), the

metric in our new coordinates becomes33

ds2 = − (1+r2)dt2+
dr2

1+r2
+r2(dθ2+cos2 θdψ2+sin2 θdφ2)+

2m

r6∆2
θ

dr2+
2(m+abq)

r2∆3
θ

dt2

− 2(2am+ bq) sin2 θ

r2∆3
θ

dtdφ− 2(2bm+ aq) cos2 θ

r2∆3
θ

dtdψ +
(2ma2 + 2bq) sin4 θ

r2∆3
θ

dφ2

+
(2mb2 + 2aq) cos4 θ

r2∆3
θ

dψ2 +
2(2abm+ a2q + b2q) sin2 θ cos2 θ

r2∆3
θ

dψdφ ,

(C.10)

32We thank Sangmin Lee for pointing out a typo in a previous version of this paper.
33The leading behaviour at large r of the pure AdS metric given in terms of dr

r
and rdα where α represents

the coordinates θ, φ,ψ, t. In the expression below, we have retained all coefficient terms of these ‘forms’

that are at most of order 1
r4

.
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where ∆θ = γ−2 = 1 − a2 sin2 θ − b2 cos2 θ. with γ as in section 3.2.

The unit normal vector to constant r slices is given by nr = 1√
grr

(with all other

components zero). As our metric contains no terms that mix r with other coordinates at

leading order , this is the same as nr = 1√
grr

.

The Christoffel symbols (that are relevant for the calculation of the stress-tensor) as

calculated from this metric up to the first subleading term (i.e. up to O( 1
r4

) terms) in r

are given by

Γttr =
r

r2 + 1

(
1 +

4(m+ abq)

r4(1 − a2 sin2 θ − b2 cos2 θ)3

)
Γφtr =

2(2am+ bq)

r5(1 − a2 sin2 θ − b2 cos2 θ)3

Γψtr =
2(2bm + aq)

r5(1 − a2 sin2 θ − b2 cos2 θ)3
Γtφr = − 2(2am + bq) sin2 θ

r5(1 − a2 sin2 θ − b2 cos2 θ)3

Γφφr =
1

r

(
1 − 4(a2m+ abq) sin2 θ

r4(1 − a2 sin2 θ − b2 cos2 θ)3

)
Γtψr = − 2(2bm + aq) cos2 θ

r5(1 − a2 sin2 θ − b2 cos2 θ)3

Γψψr =
1

r

(
1 − 4(b2m+ abq) cos2 θ

r4(1 − a2 sin2 θ − b2 cos2 θ)3

)
Γθθr =

1

r

Γφψr = − (2abm+ a2q + b2q) cos2 θ

r5(1 − a2 sin2 θ − b2 cos2 θ)3
Γψφr = − (2abm+ a2q + b2q) sin2 θ

r5(1 − a2 sin2 θ − b2 cos2 θ)3
.

(C.11)

The extrinsic curvature, Θν
µ, is given by

Θt
t = −

(
1 +

1

r2

)− 1
2
(

1 +
mγ6

r4
(3 + a2 sin2 θ + b2 cos2 θ)

)
− 4abqγ6

r4

Θφ
φ = −

√
1 + 1/r2

(
1 − mγ6

r4
(3a2 sin2 θ − b2 cos2 θ + 1)

)
+

4abqγ6 sin2 θ

r4

Θψ
ψ = −

√
1 + 1/r2

(
1 − mγ6

r4
(3b2 cos2 θ − a2 sin2 θ + 1)

)
+

4abqγ6 cos2 θ

r4

Θt
φ =

2(2am+ bq)γ6 sin2 θ

r4
Θφ
t = −2(2am+ bq)γ6

r4

Θt
ψ =

2(2bm+ aq)γ6 cos2 θ

r4
Θψ
t = −2(2bm+ aq)γ6

r4

Θψ
φ =

2(2abm+ b2q + a2q)γ6 sin2 θ

r4
Θφ
ψ =

2(2bam+ b2q + a2q)γ6 cos2 θ

r4

Θθ
θ =

mγ4

r4
,

(C.12)

where γ2 = 1
1−a2 sin2 θ−b2 cos2 θ

. Therefore

Θ = Θα
α = 4 +

1

r2
.

It is easily verified that Θβ
α is traceless when the r dependent divergent terms are

cancelled by the counter terms at the limit r going to infinity. After cancelling the divergent
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Symbol Definition Symbol Definition

D Dimension of bulk d D − 1, Dimension of boundary

GD Newton Constant in AdSD n [d/2], no. of commuting

c no. of commuting R-charges angular momenta

RAdS AdS radius (taken to be unity) Vd Volume of Sd−1, 2πd/2

Γ(d/2)

RH , r+ Horizon radius lmfp Mean free path, η/ρ

E Fluid energy ρ Proper density

S Fluid entropy s Proper entropy density

T Fluid temperature P Pressure

Ri Fluid R-charge ri Proper R-charge density

µi Fluid chemical potential Γ Thermodynamic potential (2.13)

Φ Thermodynamic potential (2.9) h P/T d, see (2.11)

hi ∂h/∂νi νi µi/T
T µν Stress tensor JµS Entropy current

Jµi R-charge current uµ dxµ/dτ = γ(1, ~v), fluid velocity

ωa Angular velocities γ
(
1 − v2

)−1/2

v2
∑

a gφaφaω
2
a Pµν Projection tensor, gµν + uµuν

aµ, ϑ, σµν see (2.5) ζ, η Bulk, shear viscosity

qµ Heat flux, see (2.6) κ Thermal conductivity

qµi Diffusion current, see (2.5) Dij Diffusion coefficients

E,H Total energy (3.8) S Total entropy (3.9)

La Angular momenta (3.8) Ri Total R-charges (3.9)

Ωa Angular velocities (3.22) T Overall temperature (3.22)

ζi Overall chemical potentials (3.22) Zgc Partition function (3.21)

Θµν Extrinsic curvature Πµν Boundary stress tensor

nµ Unit normal to boundary hµν Induced metric of boundary

τ Integration constant (3.11) κi Thermodynamic parameters (6.1)

m, q, si,Hi Black hole parameters X,Y,Z 1/(1 + κi) (6.7)

Table 1: Summary of variables used. Numbers in parentheses refer to the equation where it is

defined

terms and then normalising it according to (C.2) the stress tensor is given by

Πtt =
m

8πG5

(
γ6(3+a2 sin2 θ+b2 cos2 θ)− 4abq

m
γ6

)

=
m

8πG5

(
γ4(4γ2 − 1) − 4abq

m
γ6

)

Πφφ =
m

8πG5

(
γ6

(
3a2 sin2 θ−b2 cos2 θ+1

sin2 θ

)
− 4abq

m
γ6

)

=
m

8πG5

(
γ4

(
4γ2a2 +

1

sin2 θ

)
− 4abq

m
γ6

)
(C.13)
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Πψψ =
m

8πG5

(
γ6

(
3b2 cos2 θ−a2 sin2 θ+1

cos2 θ

)
− 4abq

m
γ6

)

=
m

8πG5

(
γ4

(
4γ2a2 +

1

cos2 θ

)
− 4abq

m
γ6

)

Πtφ = Πφt =

(
4m

8πG5

)(
a− 2bq

m

)
γ6 Πtψ=Πψt=

(
4m

8πG5

)(
b− 2aq

m

)
γ6

Πφψ = Πψφ =

(
4m

8πG5

)(
ab− 2(a2 + b2)q

m

)
γ6 Πθθ =

m

8πG5
γ4.

As we have explained in section 6.4, q/m ∼ 1/r+, and so all terms proportional to q in

the equation above are subdominant compared to terms proportional to m in the fluid

mechanical limit r+ → ∞. Dropping all q dependent terms, we find (C.13) matches

perfectly with the stress tensor as derived in (3.13) and (3.17) upon identifying (φ1, φ2) =

(φ,ψ), (ω1, ω2) = (a, b) and using (6.29).

D. Notation

We work in the (− + ++) signature. µ, ν denote space-time indices, i, j = 1 . . . c label

the c different R-charges and a, b = 1 . . . n label the n different angular momenta. The

dimensions of the AdS space is denoted by D whereas the spacetime dimensions of its

boundary is denoted by d = D − 1. In this paper we consider fluids on SD−2 × R or

equivalently Sd−1 × R. Here we present some relations which are useful in converting

between n, D and d:

D = d+ 1 = 2n+ 2 − (D mod 2)

d = D − 1 = 2n + (d mod 2)

n =

[
D − 1

2

]
=

[
d

2

]

where [x] represents the integer part of a real number x.

A summary of the variables used in this paper appears in table 1.
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